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Abstract
The purpose of the study was to evaluate the objective and subjective experience of medical students completing robotic 
surgery tasks after limited laparoscopy exposure. Twenty-three medical students without previous laparoscopy and robotic 
surgery experience self-enrolled into 0 min (n = 11), 20 min (n = 6), and 40 min (n = 6) laparoscopy training groups. Subjects 
completed rope passing and ball placement tasks on a laparoscopy trainer before repeating similar tasks on the Senhance 
Surgical System, a robot-assisted digital laparoscopy device. Videos were recorded to evaluate objective measures includ-
ing time, completion rate, clutch use, out of view instruments, ball drops, and manual adjustments. The NASA-TLX survey 
was administered to assess subjective experience using workload and task demand measures. There were no statistically 
significant differences in objective performance between the groups (p > 0.05). Subjects who completed laparoscopy train-
ing reported higher workloads, but these differences were not statistically significant (p > 0.05). NASA-TLX workload was 
correlated with time performance on Pearson and Spearman tests (r = 0.623, rho = 0.681, p < 0.01). Initial experience of 
medical students with robot-assisted surgery did not differ significantly after limited laparoscopy exposure.
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Introduction

Surgical robots have transformed the landscape of mini-
mally invasive surgery by enabling surgeons to operate 
with greater amounts of control, comfort, and capability 
[1]. Haptic feedback, movement scaling, tremor filtering, 3D 
high-definition vision, camera integration with eye-tracking, 
and remote operation from a seated console are examples of 
features that may be found on robot-assisted surgical devices 
[2]. Compared to open surgery, robotic surgery has dem-
onstrated improved clinical outcomes, including reduced 
blood loss, transfusion rate, length of hospital stay, and 
30-days complication rate after various surgical procedures 
[3]. Compared to conventional laparoscopy, robot-assisted 
procedures have similar oncological outcomes and compli-
cation rates, although functional outcomes may be superior 

for urologic, gynecologic and colorectal procedures [4–6]. 
Higher cost and longer operative times remain a challenge, 
but many believe that robotic techniques will continue to 
grow and improve at an exponential rate [7]. Consistent with 
this optimism are observations showing a shift from lapa-
roscopy to robotic techniques in recent years [8]. If market 
competition can lower costs and improve accessibility, then 
it is foreseeable that surgeons will need to be trained on 
robotic devices at an earlier stage of their careers.

The overwhelming majority of studies investigating the 
problem of skills transfer from laparoscopy to robotic sur-
gery have utilized the Da Vinci Surgical System (Intuitive 
Surgical Inc.) because of its pioneering role in robot-assisted 
surgery. Recently, the Senhance Surgical System (TransEn-
terix Inc.) was approved by the FDA as a robot-assisted 
surgical device for colorectal surgery, cholecystectomy, 
inguinal hernia repair, and gynecologic surgery in adults 
[9]. Unlike the Da Vinci, the Senhance uses non-wristed 
instruments that mimic laparoscopy, and it has therefore 
been marketed as a robot-assisted digital laparoscopy device 
[10]. The question of whether previous laparoscopy training 
can enhance or accelerate the transition to robot-assisted 
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digital laparoscopy is not known and warrants investigation 
for novice as well as experienced trainees.

The aim of the study was to evaluate the first-time robotic 
surgery experience of naive learners after first exposing 
them to laparoscopy. To our knowledge, this is the first study 
which explores how laparoscopy training affects initial per-
formance on a robot-assisted digital laparoscopy device.

Materials and methods

Our null hypothesis was that there would be no difference in 
the measured objective performance and subjective experi-
ence of naive learners who had been exposed to laparos-
copy and evaluated on robot-assisted digital laparoscopy 
outcomes. This would be the case if basic psychomotor skills 
do not readily transfer from laparoscopy (study exposure) to 
robot-assisted digital laparoscopy (study outcome).

To determine the minimum sample size needed to test 
our hypothesis, we conducted an a priori power analysis 
using G*Power 3.1.9.4 [11]. We calculated effect sizes 
(t-test matched pairs, d = 1.73–2.01) from previous learn-
ing studies where novice medical students completed basic 
manipulation tasks, demonstrating 90% of their learning 

potential after approximately six repetitions, equivalent to 
about 20 min of laparoscopy training [12, 13]. Based on 
this, we calculated that we would need at least six partici-
pants per independent group to achieve adequate statistical 
power, defined as > 80%.

Medical students (n = 23) without prior training in 
laparoscopy and robotic surgery self-enrolled through an 
email self-scheduler which was sent to the English medi-
cine programs at Jagiellonian University Medical College. 
A flow-chart depicting the study protocol in our study is 
shown in Fig. 1.

The Laparo Advance (Laparo LLC, Wroclaw, Poland) 
trainer was used for laparoscopy task training, as shown 
in Fig. 2. Participants were instructed to complete the ball 
placement task as many times as possible within 10 min, 
alternating between left and right hand to place each ball. 
After 10 min, the participants switched to the rope passing 
task, using both hands, repeating as many times as pos-
sible for another 10 min. The 0 min training group (n = 11) 
served as the control and did not complete laparoscopy 
training. The 20 min training group (n = 6) completed both 
tasks, 10 min each. The 40 min training group (n = 6) com-
pleted both tasks twice, alternating tasks every 10 min.

Fig. 1  Study protocol
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The robot-assisted tasks were completed with the Sen-
hance Surgical Robotic System (TransEnterix Inc., Morris-
ville, NC) and the Kroton LLC (Warsaw, Poland) trainer 
box. For simplicity, eye-tracking was disabled, but haptic 
feedback was left intact. The robot was introduced to the 
students using a 5 min instructional video, which was filmed 
by us and uploaded to YouTube [14]. Subjects were verbally 
instructed to “pay attention to the goals of the task, use both 
hands, remember the clutch”, and that “the experiment and 
clock may be paused if there are technical interruptions such 
as when a robot arm moves out of range, becomes stuck 
or stops responding”. During interruptions, the clock was 
paused, the robot arms were reset to the neutral starting posi-
tion, and the clock was resumed. No clues were given to 
participants on how to best perform a task. The time limit 
for each task was 10 min. Videos of performance were 
recorded and later evaluated by study investigators for task 
completion, time, clutch use, and errors including number 

of ball drops, number of instances where the instruments 
moved out of view, and number of interruptions requiring 
manual adjustments. Subjects completed the NASA-TLX 
questionnaire immediately after the robotic study, which is 
a multi-dimensional survey used to evaluate workload and 
task demand [15].

To establish performance benchmarks, the senior study 
investigator who operates with laparoscopy, the Da Vinci 
System, and the Senhance System completed the ball place-
ment and rope passing tasks three times each, followed 
immediately by the NASA-TLX survey.

Statistical analysis was performed on SPSS version 26 
(IBM Corp., Armonk, NY). The Pearson Chi square test 
was used to compare completion rates. For the remaining 
performance measures, which are non-categorical, non-
parametric tests were used without assumption of normal-
ity. The Independent-Samples Kruskal–Wallis Test was used 
for hypothesis testing between the 0 min (n = 11), 20 min 

Fig. 2  Laparoscopy training 
tasks and suggested completion 
patterns for ball placement and 
rope passing
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(n = 6), and 40 min (n = 6) training groups. Correlations 
between performance variables were analyzed using Pearson 
Linear Regression and Spearman’s Rho. Significance level 
was 0.05 for all tests, except for correlations where it was 
0.01. Plots were made using MATLAB 2019b (MathWorks 
Inc., Natick, MA).

Results

Ball placement and rope passing tasks—objective 
results

Results obtained from the study for the 0 min (n = 11), 
20 min (n = 6), and 40 min groups (n = 6) are summarized 
in Table 1. Completion rate for the ball placement task was 
10/11, 5/6, and 5/6, respectively (p > 0.05). Time spent on 
the task, balls placed and balls dropped, and clutch use did 
not differ significantly (p > 0.05). The number of subjects 
whose instruments moved outside the field of view was 2/11, 
0/6, and 0/6 for the three groups. Meanwhile, 3/11, 0/6, and 
1/6 subjects experienced interruptions requiring a pause 
of the experiment and readjustment to the starting posi-
tion. Differences in the number of out-of-view instrument 
errors and instances requiring manual readjustment were 
not statistically significant (p > 0.05). Participants in these 
groups pressed the clutch pedal 16.4 ± 11.4, 18.3 ± 12.3, and 
6.5 ± 5.4 times (p > 0.05). For reference, the expert com-
pleted the ball placement task without any errors or inter-
ruptions in 43.3 ± 3.1 s and used the clutch 2.0 ± 1.0 times 
(mean ± standard deviation of three attempts).

For the rope passing task, completion rates for the 0 min, 
20 min, and 40 min training groups were 4/11, 1/6, and 3/6 
(p > 0.05), respectively. Time spent on the task and num-
ber of loops threaded did not differ significantly (p > 0.05). 
Within these groups, 7/11, 2/6, and 4/6 subjects experienced 
interruptions requiring a pause of the experiment (p > 0.05). 
Mean clutch use was 31.4 ± 33.5, 20.5 ± 16.1, and 10.0 ± 6.9, 
respectively (p > 0.05). For reference, the expert completed 
the rope passing task without errors in 40.0 ± 7.5 s and 
pressed the clutch 2.0 ± 1.0 times (mean ± standard devia-
tion of three attempts).

A plot containing ball placement task time (x-axis) and 
rope passing task time (y-axis) for all participants including 
the expert is shown in Fig. 3. In our study, 15/23 subjects 
failed to complete the rope passing task within the time 
allowed, and within this group, 3/15 also failed to complete 
the ball placement task. In comparison, all subjects who 
completed the rope passing task also completed the ball 
placement task. The best performer in our study had task 
times that were within 3 min of the expert mean.

NASA‑TLX survey—subjective results

Survey results with relative contributions of Mental Demand 
(MD), Physical Demand (PD), Temporal Demand (TD), Per-
formance (PE), Effort (EF), and Frustration (FR) are dis-
played in Fig. 4. Subjects in the 0 min, 20 min, and 40 min 
groups reported workloads of 10.03 ± 2.21, 10.68 ± 1.32, 
and 11.73 ± 1.75 out of 15, respectively. However, increased 
workload with training was not statistically significant 
(p > 0.05). For comparison, the expert reported a workload 
score of only 0.75 out of 15.

Table 1  Results of medical 
student performance on robot-
assisted tasks

Mean ± SD 0 min group (n = 11) 20 min group (n = 6) 40 min group (n = 6) p value

Total Time (s) 834.09 ± 249.74 889.33 ± 164.01 780.67 ± 319.61 0.77
NASA-TLX score 10.03 ± 2.21 10.68 ± 1.44 11.72 ± 1.92 0.24
Task 1: Ball placement
 Time (s) 345.18 ± 148.04 336 ± 165.82 285.5 ± 191.46 0.65
 Instruments out of view 0.27 ± 0.65 0.00 ± 0.00 0.00 ± 0.00 0.32
 Manual adjustments 0.36 ± 0.67 0.00 ± 0.00 0.33 ± 0.82 0.41
 Ball drops 1.46 ± 1.21 2.00 ± 1.41 2.50 ± 2.43 0.66
 Balls placed 3.73 ± 0.65 3.83 ± 0.41 3.67 ± 0.82 0.99
 Clutch use 16.36 ± 11.39 18.33 ± 12.26 6.50 ± 5.43 0.052
 Completion rate (%) 90.91 83.33 83.33 0.87

Task 2: Rope passing
 Time (s) 488.91 ± 180.99 553.33 ± 114.31 495.17 ± 165.46 0.55
 Instruments out of view 0.45 ± 0.69 0.17 ± 0.41 1.00 ± 1.55 0.43
 Manual adjustments 1.09 ± 1.22 1.00 ± 2.00 1.67 ± 2.25 0.55
 Loops threaded 1.36 ± 1.36 1.00 ± 1.26 2.17 ± 0.98 0.23
 Clutch use 31.36 ± 33.49 20.50 ± 16.13 10 ± 6.93 0.20
 Completion rate (%) 36.36 16.67 50 0.47
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Regression analysis

Pearson’s and Spearman’s tests did not reveal statistically 
significant correlations between laparoscopy training time 
(0 min, 20 min, and 40 min) and the measurements listed in 
Table 1 (p > 0.01). NASA-TLX score was moderately cor-
related with total time spent on tasks (r = 0.623, rho = 0.681, 
p < 0.01).

Discussion

The time to achieve mastery in basic and advanced robotic 
tasks in a simulator setting has been estimated at 10 h for 
junior and senior surgery residents, respectively [16]. 
However, residents from institutions where structured 
curricula are not mandatory may fail to complete robotic 
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surgery training, citing barriers such as lack of time, lack 
of access to robot or simulators, and lack of motivation, 
in contrary to overwhelming initial interest to gain fun-
damental robotic skills [17]. Laparoscopy education, 
notably the Fundamentals of Laparoscopy Surgery (FLS) 
curriculum, is more accessible to surgery residents, but 
evidence is lacking as to whether these skills transfer to 
robot-assisted surgery.

Learning a basic laparoscopy task, such as the FLS peg 
transfer, follows an inverse learning curve, with 90% of gains 
occurring in the first 5.8 ± 2.3 trials for a group of 16 medi-
cal students [13]. In another study of 16 new surgical resi-
dents, peg transfer task times of 201 ± 84 s were measured 
prior to FLS training [18]. If 90% of gains occur in the first 
5.8 ± 2.3 repetitions for this task, then a large effect size 
should be measurable after a training time of 20 min, which 
should allow for six repetitions of this task.

We selected the ball placement and rope passing tasks for 
our study because they satisfied the same psychomotor cri-
teria as the FLS peg transfer task, namely depth perception, 
visual-spatial perception in a 2D setting, and the coordina-
tion of dominant and non-dominant hands, which are impor-
tant skills for suturing and needle positioning [19]. The 
maximum time limit allowed for this foundation level task 
during FLS curriculum testing is 300 s, with a proficiency 
benchmark of 48 s [20]. For comparison, the robot-assisted 
version of the ball placement and rope passing tasks used in 
our study was 600 s, with measured proficiency benchmarks 
of 43.3 ± 3.1 and 40.0 ± 7.5 s, respectively.

We hypothesized that an effect size would be measur-
able if laparoscopy learning had occurred, and if these skills 
then transferred to the robot-assisted digital laparoscopy 
platform. However, we found no statistically significant dif-
ferences in objective measures, such as time spent on tasks, 
completion rate, clutch use, out of view instruments, errors, 
and manual adjustments.

We also measured subjective differences related to the 
performance of a task which may not be reflected in objec-
tive measures, such as when two or more groups achieve 
similar performance times despite one group that finds the 
task to be significantly more difficult than the other groups. 
NASA-TLX workload was greater in laparoscopy-exposed 
groups in our study, but this result was not statistically sig-
nificant. This observation could be due to ergonomic differ-
ences between laparoscopy and robotic surgery [21].

Altogether, our study results suggest that laparoscopy 
exposure, in the form of limited psychomotor skills training, 
does not affect initial robot-assisted surgery performance 
among learners. This study supports the idea that training 
in robotic surgery ought to take place in a robot-assisted 
simulation environment.

With respect to study limitations, there was self-selec-
tion bias in our study because participants self-enrolled 

and self-assigned into their own groups. The number of 
participants in our study was also small, affecting the pre-
cision of our results. Practical limitations with respect to 
operating room time, student availability, surgeon avail-
ability, robot availability, and experiment costs make it dif-
ficult to organize larger and more comprehensive studies.

Although randomization and blinding could be achieved 
by performing this study on a virtual reality simulator, 
simulators are not yet available for the Senhance Surgi-
cal System. Simulation is also not the same as real-world 
surgery in an operating room setting, where technical dif-
ficulties and instrument errors can occur, as demonstrated 
by our study. Additionally, the presence of an attending 
surgeon could have influenced our experiment, but train-
ees at most institutions (including ours) are not allowed 
to operate without direct supervision. Interruptions are 
stressful and can influence the subjective experience of 
users, which our study aimed to capture. These arguments 
support and strengthen the validity of our study.

Several studies have previously reported faster learning 
curves and improved retention of skills with robotic assis-
tance as compared to laparoscopy [22–25]. With respect to 
basic manipulation tasks, improved task speeds with robot 
assistance have been measured as compared to laparos-
copy, but with minimal transfer effects [26]. Among stud-
ies looking at skills transfer, one study compared novices 
completing a ball drop task with laparoscopy or the RoSS 
simulator, and found that while both groups improved after 
training, the degree of improvement was equal, indicating 
there is no skills transfer [27]. Other studies have argued 
that skills transfer effects from laparoscopy to robotic sur-
gery may be more pronounced with difficult tasks, such 
as suturing [22, 23]. In our view, laparoscopy and robotic 
surgery are different domains, perhaps requiring different 
skills. Previously, novice users have demonstrated rapid 
adaptation to the Senhance device, regardless of experi-
ence level [28]. Validated robotic surgery curricula, such 
as the Fundamentals of Robotic Surgery (FRS), offer a 
direct and efficient path for novices to become proficient 
in robotic skills without embarking on the intermediate 
step of laparoscopy [29].

Individual performance was highly variable, and it 
would have been worthwhile to ask participants about their 
backgrounds and career goals to investigate factors differ-
entiating high and low performers. One study has found 
evidence to suggest that objective innate ability may dis-
tinguish students interested in surgical careers from others 
[30]. However, it must be remembered that innate or initial 
ability may not correlate with the rate of improvement of 
robotic skills, which requires practice.
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Conclusion

Limited laparoscopy exposure may not improve the initial 
performance of novices on the Senhance Surgical System, a 
robot-assisted digital laparoscopy device. Further investiga-
tion is needed to determine how laparoscopy training affects 
robot-assisted surgery performance.
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