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Abstract: Background: Peripheral artery disease (PAD) is a significant burden, particularly among
patients with severe disease requiring invasive treatment. We applied a general Machine Learning
(ML) workflow and investigated if a multi-dimensional marker set of standard clinical parameters
can identify patients in need of vascular intervention without specialized intra–hospital diagnostics.
Methods: This is a retrospective study involving patients with stable PAD (sPAD, Fontaine Class I and
II, n = 38) and unstable PAD (unPAD, Fontaine Class III and IV, n = 18) in need of invasive therapeutic
measures. ML algorithms such as Random Forest were utilized to evaluate a matrix consisting of
multiple routinely clinically available parameters (age, complete blood count, inflammation, lipid,
iron metabolism). Results: ML has enabled a generation of an Artificial Intelligence (AI) PAD score
(AI-PAD) that successfully divided sPAD from unPAD patients (high AI-PAD in sPAD, low AI-PAD
in unPAD, cutoff at 50 AI-PAD units). Furthermore, the probability score positively coincided with
gold-standard intra-hospital mean ankle-brachial index (ABI). Conclusion: AI-based tools may
be promising to enable the correct identification of patients with unstable PAD by using existing
clinical information, thus supplementing clinical decision making. Additional studies in larger
prospective cohorts are necessary to determine the usefulness of this approach in comparison to
standard diagnostic measures.

Keywords: artificial intelligence; machine learning; classification model; Random Forest; peripheral
artery disease; vascular disease

1. Introduction

Peripheral artery disease (PAD) of the lower extremities affects more than 200 million people
worldwide and is likely an underrecognized disease, with rising prevalence with aging [1].
PAD is associated with significant morbidity and mortality [2]. Up to 50–60 percent of PAD
patients die from cardiovascular causes within 10 years [3]. Up to 30 percent of PAD patients are
asymptomatic but still have nearly the same cardiovascular mortality as highly symptomatic
PAD patients.

Current clinical methods to diagnose PAD are based on the measurement of ankle-
brachial index (ABI) or Doppler ultrasound flow measurements [4]. These methods are very
useful for PAD diagnosis but require trained staff in an intra–hospital or ambulant setting.
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It would be practical to have a non-invasive tool at disposal that could aid hands-off
clinical decision-making, based on existing patient data, perhaps decreasing the workload
of hospital staff.

Multiple individual biomarkers of PAD have been proposed. However, single biomark-
ers often either lack sensitivity/specificity or are not available for wide-spread clinical use.
Yet, significant amounts of data are generally readily available as a part of routine clinical
and laboratory tests.

The aim of the study was to establish a general workflow to identify discriminative
multi-dimensional markers for potential clinical diagnostics of vascular intervention using
Machine Learning (ML) approaches. We hypothesized that the utilization of these results
can be suitable for artificial intelligence (AI)-based datamining. We have analyzed a cohort
of patients with stable PAD (sPAD, Fontaine class I and II) and unstable PAD (unPAD,
Fontaine class III and IV). The latter group required invasive therapy per current guidelines.
We analyzed the records of these patients, containing laboratory tests commonly used in
the workup of cardiovascular patients, and generated a multi-dimensional matrix as input
for ML, generating a probability output score. In order to compare the predictions of the
AI to the results of gold-standard clinical assessment, we measured the ABI.

2. Materials and Methods
2.1. Patient Data Collection

This study is a single-center, retrospective analysis of data and blood measurements
collected from patients with PAD. PAD patients undergoing angiologic interventions at the
Department of Cardiology and Angiology (Hannover Medical School) between 2017–2019
were included. Informed consent was obtained from all subjects involved in the study for
the retrospective use of the data. The study was conducted according to the guidelines
of the Declaration of Helsinki and approved by the local Ethics Committee of Hannover
Medical School (Nr.9548_BO_K_2021, 08.01.2021).

The following clinical data containing laboratory tests were collected: blood count
(erythrocytes, platelets, leukocytes, hemoglobin, hematocrit), lipid panel (LDL choles-
terol, HDL cholesterol, triglycerides), inflammation (CRP), liver and kidney function tests
(GOT, GPT, urea, serum creatinine, estimated glomerular filtration rate eGFR), electrolytes
(sodium, potassium) and iron metabolism (serum ferritin, transferrin, transferrin satura-
tion). Additional clinical data was also taken into consideration (age, sex, NYHA Class,
systolic blood pressure, smoking status, history of ischemic cardiac disease, medication).

The inclusion criteria for PAD patients were Fontaine stadium I–IV as determined
by reduced ABI < 0.9 and arterial Doppler ultrasound or CT angiography. Following
patient risk factors were documented: age, sex, arterial hypertension, diabetes mellitus,
smoking, obesity, hyperlipidemia, history of heart failure and history of ischemic cardiac
disease. Data of clinical presentation, medication, blood values and therapeutic details
were recorded and retrospectively analyzed for the current study.

2.2. Statistical Analysis and Modeling

Statistical analysis and modeling were performed by R version 4.1.0 (R Foundation
for Statistical Computing, Vienna, Austria). Patient characteristics and clinical parameters
are shown as frequencies for categorical variables and as means for numerical variables.
Groups (sPAD, unPAD) were compared using the Mann–Whitney-U test (False discovery
rate (FDR)-adjusted p-value < 0.05; method of Benjamini and Hochberg).

Diagnostic markers were calculated using ML methods Random Forest (RF), logistic
regression modeling and stepwise regression using R package caret version 6.0.88 (https://doi.
org/10.18637/jss.v028.i05; assessed on 17 September 2021). For model generation, we divided
the patients into sPAD and unPAD groups, and model performance was evaluated based on
predictive power (accuracy). The models were further used to calculate an AI-Score (AI-PAD).
The score represents a scale for assessing disease severity between 0 and 100, with higher
Fontaine classes being assumed to represent more severe disease. Typically, scores tend to be in
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the marginal ranges of the scale, i.e., approximately 0–30 or 70–100. The two groups result from
the definition of sPAD and unPAD. For an even separation of the groups, the midpoint value of
50 is used as the cutoff. Due to the low sample number limiting data splitting, we performed
additional validation steps using spearman correlation (R package Hmisc version 4.5.0;
http://biostat.mc.vanderbilt.edu/s/Hmisc; assessed on 17 September 2021) and partial plot
analysis (R package randomForest version 4.6.14; https://doi.org/10.1023/A:1010933404324;
assessed on 17 September 2021) of the features. Data were visualized using the R packages
corrplot version 0.90 (https://github.com/taiyun/corrplot; assessed on 17 September 2021)
and ggplot2 version 3.3.5 (https://www.springer.com/gp/book/9783319242750; assessed on
17 September 2021).

Subsequent statistical analysis was conducted in GraphPad Prism Software (Ver-
sion 9.2.0, GraphPad Software, Inc., San Diego, CA, USA) via the t-test and Pearson
correlation analysis (p < 0.05 considered as statistically significant). The data displayed a
normal distribution for the AI-PAD and ABI (Shapiro–Wilk test, p > 0.05 for both values in
both sPAD and unPAD group).

3. Results
3.1. Patient Characteristics and Correlation Analysis

We conducted a retrospective study with clinical data (Table 1) obtained from patients
belonging to sPAD (Fontaine class I or II) or unPAD (Fontaine class III or IV). unPAD
patients required surgical or percutaneous intervention per current guidelines [4]. Patient
groups were sex and age matched. Analysis shows no statistically significant differences
between the groups (Mann–Whitney-U test, FDR < 0.05, Table 1).

Table 1. Patient cohort characteristics: sPAD (Fontaine I, Fontaine II) and unPAD (Fontaine III, Fontaine IV) groups. sPAD:
stable PAD, unPAD: unstable PAD; p-Value < 0.05 as significance level.

sPAD (n = 38) unPAD (n = 18) p-Value adj. p-Value (FDR)

Sex-no. (%)
Male 28 (74) 14 (78)

Female 10 (26) 4 (22)
Age (years) 70.3 71.1 0.6542 0.7414

Fontaine Class
I 4

IIa 1
IIb 33
III 12
IV 6

Clinical parameters
Serum Ferritin (µmol/L) 14.4474 14.6111 0.8535 0.8535

Serum Transferrin (µmol/L) 55.3421 53.0556 0.4392 0.7058
Serum Transferrin Saturated

(%) 26.9211 28.4444 0.7188 0.7566

Serum Ferritin/EC (µg/L) 150.4211 226 0.6673 0.7414
BMI (kg/m2) 26.6342 26.0111 0.3709 0.6982

Blood Pressure (mmHg) 136.3947 132.3889 0.6356 0.7414
CRP (mg/L) 7.0842 4.0833 0.3569 0.6982

Leukocytes (tsd/µL) 8.2921 7.9056 0.5985 0.7414
Potassium (mmol/L) 4.5105 4.6 0.4588 0.7058

Sodium (mmol/L) 139.4211 138.1111 0.384 0.6982
Creatinin (µmol/L) 128.4474 124.6667 0.2468 0.6982

eGFR (ml/min/1.73 m2) 68.3684 59.6111 0.1629 0.6982
Hemoglobin (g/dL) 13.0763 12.6389 0.3344 0.6982

Hematocrit (%) 38.8789 37.3 0.2398 0.6982
INR 1.0366 1.0261 0.06259 0.6982

Cholesterol (mg/dL) 152.3684 159.3889 0.3658 0.6982
HDL (mg/dL) 53.5263 49.9444 0.648 0.7414
LDL (mg/dL) 87.3421 92.7222 0.3045 0.6982

Triglycerides (mg/dL) 127.7105 162.8889 0.1527 0.6982

We therefore applied additional approaches to investigate a combinatorial effect.
An initial screening of the pooled data of all patients showed interrelations between
various clinical parameters in a two-dimensional correlation analysis (Spearman test,
Figure 1). Individual parameters did not show correlation to PAD stage, thus lacking
specificity to identify patients with advanced PAD. However, the majority of parameters
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showed an interlinkage, displaying statistically significant correlations between values.
We thus hypothesized that a more complex computational model could exploit these
interconnections via the generation of a decision-tree algorithm that could guide a correct
sorting of stable and unstable PAD patients.
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3.2. ML-Based Scoring for the Identification of Differences between sPAD and unPAD

We further analyzed the data using ML methods RF, logistic regression modeling and
stepwise regression, in which RF shows best performance. The developed high-throughput
RF model sorting patients into sPAD and unPAD groups is schematically shown in Figure 2.
The algorithm generates a quantifiable AI scoring system (AI-PAD, formula shown in
Figure 2). AI-PAD showed a significantly higher value amongst unPAD patients, clearly
delineating these patients from sPAD (Figure 3A). We proceeded to compare AI-PAD
performance to the current gold-standard ABI. ABI values were significantly lower in
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unPAD patients as expected but displayed a higher level of variability than the AI-PAD
(Figure 3B). Nevertheless, a combination of ABI and AI-PAD yielded clear clustering of the
sPAD and unPAD group (Figure 3C). Therefore, the AI-PAD showed comparable usefulness
to gold-standard ABI measurements in identifying unPAD patients.
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4. Discussion

Analysis of large datasets with AI may develop into a helpful tool to guide the clinical
decision process. The approaches can be adapted into a user-friendly format, requiring
input of pre-defined data categories. Such approaches have already garnered interest in
radiology, where ML imaging analysis of MRI images was reported to be non-inferior in
the recognition of lung cancer, in comparison to experienced physicians [5]. ML improved
the prediction capabilities of blood-based biomarker studies, using novel non-coding
microRNA molecules [6–8]. Further studies show its applicability, for instance in plasma
metabolome profiling for the diagnosis of adrenocortical tumours [9].

In order to emulate a realistic clinical scenario, we analysed multiple commonly
available clinical markers. Aging, smoking, hypertension, inflammation and the lipid
profile are standard components of clinical scoring systems [10–12]. We included iron
metabolism measurements, due to the rising importance of iron for PAD [13,14].

We could show that the addition of further clinical and laboratory factors to the
ABI measurement leads to better identification of patients at risk for advanced PAD.
Even without ABI, the AI had significant correlation with gold-standard in-hospital ABI
measurement by trained staff and is well-suited to identify undiagnosed PAD patients in a
high-risk clinical setting.

The main limitations of this study are the relatively small patient group size and
retrospective design, thus generally limiting downstream analysis. Despite the fact that
ML-based approaches imply the need of large data cohorts, we decided to utilize them as a
starting point for clinical marker evaluation by building AI scoring models in the context
of vascular intervention diagnostics. We combat the low sample number limiting data
splitting by applying several ML algorithm (RF, logistic regression, stepwise regression) as
the basis for AI-PAD calculation, combined with correlation and partial plot analysis as
validation steps of the feature selection process [15].

The RF model performed best and was therefore used in our pilot study. Which model
is ultimately the most suitable always depends on the data and its inherent structure.
RF can map a complex structure for prediction by linking several decision trees. Unlike
other algorithms (e.g., Elastic Net), RF are not limited by mathematical assumptions
such as linearity. Since the individual decisions are always binary, RF can handle both
continuous and categorical features. However, alternative algorithms should always be
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considered for the model generation. This allows to evaluate the similarities and differences
between the models, as simpler models can often produce good results and can be used for
model generation.

The identified ML-based scoring system shows the potential to be useful for clinical
classification, however prospective studies with more participants would be needed to form
a conclusive evaluation of the AI performance, in comparison to classical clinical testing.
AI algorithms must be further improved for potential every-day clinical implementation.

We have conducted a pilot study that serves as a conceptual framework for automatic
estimation of disease severity by ML algorithms, which initially eliminates the need for
model generalization but becomes important with further application. Therefore, we
recommend using proven methods such as data splitting and cross-validation for improved
generalization of the models when applying the concept. However, we do not believe
that even optimal AI algorithms will soon replace trusted clinical methods such as ABI
measurement, but may help with patient screening outside the hospital, decreasing medical
staff workload, thus allowing more patient–physician interaction time and better quality
of care.

Taken together, we could demonstrate the promise of AI algorithms in identifying
patients needing intensive PAD treatment based on basic patient history and standard
clinical labs, which should be further evaluated in larger patient cohorts.

Author Contributions: Conceptualization, K.S., S.D.S., M.K. and J.T.; methodology, K.S., S.D.S., N.D.,
M.K. and J.T.; software, K.S., S.D.S., N.D. and M.K.; experiments/clinics, K.S., S.D.S., J.B. and J.T.;
formal analysis, K.S., S.D.S., N.D., M.K. and J.T.; investigation, K.S., S.D.S., N.D., M.K. and J.T.;
resources, J.B., T.T. and M.K.; data curation, K.S., S.D.S., N.D., M.K. and J.T.; writing—original draft
preparation, K.S.; S.D.S. and M.K. writing—review and editing, S.D.S., N.D., J.F., T.T. and M.K.;
visualization, K.S., S.D.S., N.D. and M.K.; supervision, K.S. and M.K.; project administration, K.S.
and M.K.; funding acquisition, K.S., M.K, J.T, T.T. and J.B. All authors have read and agreed to the
published version of the manuscript.

Funding: Open Access funding support by FAU. This research was funded by Ellen-Schmidt Program
of the Medical School of Hannover for the habilitation of female scientists to K.S. The German Federal
Ministry of Education and Research (BMBF), CompLS program grant 031L0262C (to N.D., M.K.;
ML analysis) is acknowledged.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the local Ethics Committee of Hannover Medical School
(Nr.9548_BO_K_2021, 08.01.2021).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: All data are available in manuscript and as supplement online.

Conflicts of Interest: T.T. has filed and licensed patents regarding noncoding RNAs in CVD. T.T.
is founder and shareholder of Cardior Pharmaceuticals GmbH. All other authors have no conflict
of interest.

References
1. Song, P.; Rudan, D.; Zhu, Y.; Fowkes, F.J.I.; Rahimi, K.; Fowkes, F.G.R.; Rudan, I. Global, regional, and national prevalence and risk

factors for peripheral artery disease in 2015: An updated systematic review and analysis. Lancet Glob. Health 2019, 8, e1020–e1030.
[CrossRef]

2. Criqui, M.H.; Langer, R.D.; Fronek, A.; Feigelson, H.S.; Klauber, M.R.; McCann, T.J.; Browner, D. Mortality over a period of
10 years in patients with peripheral arterial disease. N. Engl. J. Med. 1992, 326, 381–386. [CrossRef] [PubMed]

3. Sartipy, F.; Sigvant, B.; Lundin, F.; Wahlberg, E. Ten year mortality in different peripheral arterial disease stages: A population
based observational study on outcome. Eur. J. Vasc. Endovasc. Surg. Off. J. Eur. Soc. Vasc. Surg. 2018, 55, 529–536. [CrossRef]
[PubMed]

4. Aboyans, V.; Ricco, J.-B.; Bartelink, M.-L.E.L.; Björck, M.; Brodmann, M.; Cohnert, T.; Collet, J.-P.; Czerny, M.; De Carlo, M.;
Debus, S.; et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the
European Society for Vascular Surgery (ESVS). Eur. Heart J. 2018, 39, 763–816. [CrossRef] [PubMed]

http://doi.org/10.1016/S2214-109X(19)30255-4
http://doi.org/10.1056/NEJM199202063260605
http://www.ncbi.nlm.nih.gov/pubmed/1729621
http://doi.org/10.1016/j.ejvs.2018.01.019
http://www.ncbi.nlm.nih.gov/pubmed/29478910
http://doi.org/10.1093/eurheartj/ehx095
http://www.ncbi.nlm.nih.gov/pubmed/28886620


Biomedicines 2021, 9, 1456 8 of 8

5. Yu, K.-H.; Lee, T.-L.M.; Yen, M.-H.; Kou, S.C.; Rosen, B.; Chiang, J.-H.; Kohane, I.S. Reproducible machine learning methods for
lung cancer detection using computed tomography images: Algorithm development and validation. J. Med. Internet Res. 2020, 22,
e16709. [CrossRef] [PubMed]

6. Rosato, A.J.; Chen, X.; Tanaka, Y.; Farrer, L.A.; Kranzler, H.R.; Nunez, Y.Z.; Henderson, D.C.; Gelernter, J.; Zhang, H. Salivary mi-
croRNAs identified by small RNA sequencing and machine learning as potential biomarkers of alcohol dependence. Epigenomics
2019, 11, 739–749. [CrossRef] [PubMed]

7. Shigemizu, D.; Akiyama, S.; Asanomi, Y.; Boroevich, K.; Sharma, A.; Tsunoda, T.; Sakurai, T.; Ozaki, K.; Ochiya, T.; Niida, S.
A comparison of machine learning classifiers for dementia with Lewy bodies using miRNA expression data. BMC Med Genom.
2019, 12, 150. [CrossRef] [PubMed]

8. Ludwig, N.; Fehlmann, T.; Kern, F.; Gogol, M.; Maetzler, W.; Deutscher, S.; Gurlit, S.; Schulte, C.; von Thaler, A.-K.; Deuschle, C.;
et al. Machine learning to detect Alzheimer’s disease from virculating non-coding RNAs. Genom. Proteom. Bioinform. 2019, 17,
430–440. [CrossRef] [PubMed]

9. Schweitzer, S.; Kunz, M.; Kurlbaum, M.; Vey, J.; Kendl, S.; Deutschbein, T.; Hahner, S.; Fassnacht, M.; Dandekar, T.; Kroiss,
M. Plasma steroid metabolome profiling for the diagnosis of adrenocortical carcinoma. Eur. J. Endocrinol. 2019, 180, 117–125.
[CrossRef] [PubMed]

10. Piepoli, M.F.; Hoes, A.W.; Agewall, S.; Albus, C.; Brotons, C.; Catapano, A.L.; Cooney, M.T.; Corrà, U.; Cosyns, B.; Deaton, C.;
et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the
European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice constituted by
representatives of 10 societies and by invited experts)Developed with the special contribution of the European Association for
Cardiovascular Prevention & Rehabilitation (EACPR). Eur. Heart J. 2016, 37, 2315–2381. [PubMed]

11. Assmann, G.; Cullen, P.; Schulte, H. Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year
follow-up of the prospective cardiovascular Münster (PROCAM) study. Circulation 2002, 105, 310–315. [CrossRef] [PubMed]

12. Diamond, G.A.; Forrester, J.S.; Hirsch, M.; Staniloff, H.M.; Vas, R.; Berman, D.S.; Swan, H.J. Application of conditional probability
analysis to the clinical diagnosis of coronary artery disease. J. Clin. Investig. 1980, 65, 1210–1221. [CrossRef] [PubMed]

13. Otaki, Y.; Watanabe, T.; Takahashi, H.; Sugai, T.; Yokoyama, M.; Tamura, H.; Kato, S.; Nishiyama, S.; Arimoto, T.; Shishido, T.;
et al. Impact of iron deficiency on peripheral artery disease after endovascular therapy. Circ. Rep. 2019, 1, 187–195. [CrossRef]
[PubMed]

14. DePalma, R.G.; Hayes, V.W.; O’Leary, T.J. Optimal serum ferritin level range: Iron status measure and inflammatory biomarker.
Metallomics 2021, 13, mfab030. [CrossRef] [PubMed]

15. Veronesi, G.; Kunz, M.; Vey, J.; Kapsner, L.A.; Fuchs, M.; Unberath, P. Kunz a toolbox for functional analysis and the systematic
identification of diagnostic and prognostic gene expression signatures combining meta-analysis and machine learning. Cancers
2019, 11, 1606. [CrossRef] [PubMed]

http://doi.org/10.2196/16709
http://www.ncbi.nlm.nih.gov/pubmed/32755895
http://doi.org/10.2217/epi-2018-0177
http://www.ncbi.nlm.nih.gov/pubmed/31140863
http://doi.org/10.1186/s12920-019-0607-3
http://www.ncbi.nlm.nih.gov/pubmed/31666070
http://doi.org/10.1016/j.gpb.2019.09.004
http://www.ncbi.nlm.nih.gov/pubmed/31809862
http://doi.org/10.1530/EJE-18-0782
http://www.ncbi.nlm.nih.gov/pubmed/30481155
http://www.ncbi.nlm.nih.gov/pubmed/27222591
http://doi.org/10.1161/hc0302.102575
http://www.ncbi.nlm.nih.gov/pubmed/11804985
http://doi.org/10.1172/JCI109776
http://www.ncbi.nlm.nih.gov/pubmed/6767741
http://doi.org/10.1253/circrep.CR-18-0029
http://www.ncbi.nlm.nih.gov/pubmed/33693136
http://doi.org/10.1093/mtomcs/mfab030
http://www.ncbi.nlm.nih.gov/pubmed/34048587
http://doi.org/10.3390/cancers11101606
http://www.ncbi.nlm.nih.gov/pubmed/31640282

	Introduction 
	Materials and Methods 
	Patient Data Collection 
	Statistical Analysis and Modeling 

	Results 
	Patient Characteristics and Correlation Analysis 
	ML-Based Scoring for the Identification of Differences between sPAD and unPAD 

	Discussion 
	References

