The International Journal of Medical Robotics and Computer Assisted Surgery

Senhance Surgical System in Benign Hysterectomy: A Real-World Comparative Assessment of Case Times and Instrument Costs vs da Vinci Robotics and Laparoscopic Assisted Vaginal Hysterectomy Procedures

Journal:	The International Journal of Medical Robotics and Computer Assisted Surgery
Manuscript ID	RCS-21-0018.R2
Wiley - Manuscript type:	Original Article
Date Submitted by the Author:	05-Apr-2021
Complete List of Authors:	Coussons, Herb; CAVA Robotics International, LLC Feldstein, Josh; CAVA Robotics International, LLC, McCarus, Steven; AdventHealth Winter Park Hospital, Gynecology
Anatomy Keywords:	abdominal, reproductive systems
Additional Keywords:	Senhance; da Vinci; benign hysterectomy; laparoscopy; robotics
Technology Keywords:	computer assisted surgery
Speciality Keywords:	gynaecology, laparoscopy, minimal invasive surgery, MIS
Operation Keywords:	hysterectomy
Abstract:	Objectives: Comparison of retrospective, learning curve benign hysterectomy cost and case time data from Senhance total laparoscopic hysterectomy (TLH) cases with similar da Vinci robot cases and laparoscopic-assisted vaginal hysterectomy (LAVH) cases. Methods: Instrument costs, console time, and case time analysis from 6 surgeons at 4 US and European hospitals compared with retrospective, sequential da Vinci TLH and standard laparoscopic LAVH cases extracted from the CAVAlytics database. Results: Senhance Gyn surgeons in their learning curve when compared to da Vinci learning curve Gyn surgeons achieved lower median instrument costs (\$559 vs \$1,393, respectively, p<0.001) with comparable console times (91.5 vs 96 minutes, p=0.898); Senhance and LAVH case costs were comparable (\$559 vs \$498, p=0.336). Conclusion: In benign hysterectomy, the Senhance system may present a lower-cost approach with equivalent case times compared with similar da Vinci robotic cases.

This article has been accepted for publication and traderdone füllspeer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/rcs.2261.

This article is protected by copyright. All rights reserved.

Senhance Surgical System in Benign Hysterectomy: A Real-World Comparative Assessment of Case Times and Instrument Costs vs da Vinci Robotics and Laparoscopic Assisted Vaginal Hysterectomy Procedures

Herbert Coussons, MD¹, Josh Feldstein², Steve McCarus, MD³

- Medical Director, CAVA Robotics International;145 University Dr., Suite 2660, Amherst, MA USA 01004; 920/639-8434; <u>drcoussons@cava-</u> <u>robotics.com</u> (email); 203/702-5557 (fax).
- President, CAVA Robotics International; 145 University Dr., Suite 2660, Amherst, MA USA 01004; 203/241-4390; <u>Jfeldstein@cava-</u> <u>robotics.com(email)</u>; 203/702-5557 (fax).
- Chief, Gyn Surgery, AdventHealth Winter Park Hospital; 100 Edinburgh Drive, Winter Park, FL 32792; 407/921-5499; <u>Sdmccarus@me.com</u> (email).

Date of second re-submission: April 5, 2021

Word Count: 3139

Corresponding author: Josh Feldstein 203/241-4390; <u>Jfeldstein@cava-robotics.com</u> (email); 203/702-5557 (fax).

Disclosure statement: Dr. Coussons and Mr. Feldstein are employed by CAVA Robotics International, which received support from Asensus Surgical to perform independent analysis of data and drafting of this manuscript. The commercial source had no influence on either the data analytics or the drafting of the paper. Dr. McCarus has no conflicts of interest and has nothing to disclose.

<u>Abstract</u>

Objectives: Comparison of retrospective, learning curve benign hysterectomy cost and case time data from Senhance total laparoscopic hysterectomy (TLH) cases with similar da Vinci robot cases and laparoscopic-assisted vaginal hysterectomy (LAVH) cases. Methods: Instrument costs, console time, and case time analysis from 6 surgeons at 4 US and European hospitals compared with retrospective, sequential da Vinci TLH and standard laparoscopic LAVH cases extracted from the CAVAlytics database.

Results: Senhance Gyn surgeons in their learning curve when compared to da Vinci learning curve Gyn surgeons achieved lower median instrument costs (\$559 vs \$1,393, respectively, p<0.001) with comparable console times (91.5 vs 96 minutes, p=0.898); Senhance and LAVH case costs were comparable (\$559 vs \$498, p=0.336).

Conclusion: In benign hysterectomy, the Senhance system may present a lower-cost approach with equivalent case times compared with similar da Vinci robotic cases.

Keywords: Senhance; da Vinci; benign hysterectomy; laparoscopy; robotics

Introduction

Over the last two decades, the da Vinci[®] robot (Intuitive Surgical, Inc.) has emerged as a prevalent minimally invasive approach to hysterectomy.¹ As its use has increased, there has also been a concomitant reduction in the number of abdominal hysterectomies for benign indications both overall and relative to other approaches to hysterectomy. Together with total laparoscopic hysterectomy (TLH), laparoscopic-assisted vaginal hysterectomy (LAVH), vaginal hysterectomy, and laparoscopic supracervical hysterectomy, the increase in robotic hysterectomy has resulted in the decrease of abdominal hysterectomy to approximately 28%.² Since its approval by the FDA for benign gynecology in 2005, scores of studies and publications have assessed the clinical and economic strengths and weaknesses of the Intuitive Surgical da Vinci robot's use in benign hysterectomy, with the vast majority of studies underscoring robotic surgery as generally equivalent clinically to laparoscopy together with some reports of reduced pain, less blood loss, and shorter length of stay albeit with generally higher cost and longer operative times, though this variable may also be dependent on patient characteristics and co-morbidities.3,4,5

Today, surgical costs and operative times are increasingly critical given the need to improve contribution margins in surgical procedures as a key driver in hospital profitability. Moreover, with the growing understanding of best practices in robotic surgery and related robotic program optimization,^{6,7} newer studies and publications are demonstrating that, in specific robotic surgery case types, including benign

This article is protected by convright. All rights reserved

hysterectomy, cases can be performed for comparable or even lower cost when compared to laparoscopy, with equivalent clinical outcomes. ^{6,7,8,9,10}

Senhance Surgical System

In 2018, the introduction of the Senhance[®] Surgical System (Asensus Surgical US, Inc.) in the US and Europe presented robotic and laparoscopic surgeons with an alternative to the Intuitive Surgical da Vinci robot. Comprised of an open-platform, modular architecture with three mobile arms that allow for use of existing laparoscopic vision systems, trocars, and OR tables (Figure 1), the Senhance system's instruments are reusable. The system incorporates eye-tracking camera control, haptic sensing, and 3DHD visualization. Case set-up for Senhance procedures generally includes raising the patient so the camera port is aligned with the front of the arms' collar; setting the patient in Trendelenburg; setting the scope to 0° to provide clearance for anesthesiology; and using the xyphoid process as the point for arm placement. Both arms use instruments that are 310 mm in length. (Figure 2)

For Gyn cases specifically, cameras in Senhance cases should be placed proximal to the umbilicus, but can also be located distally, subject to patient anatomy. Instrument port placement is suggested to be set a minimum of 8 cm from the camera port. (Figure 3) Surgical instrument set-up, docking and undocking can be performed by a surgical assistant and surgeon. Docking and undocking take place on a robotic arm using a clamp and lock system, which does not require attachment of the robotic arm directly to a trocar. Standard laparoscopes, cameras, insulflators, trocars, and reusable instruments reduce surgical expense. Use of other instruments like ultrasonic energy

are compatible with the system which can use both 3 mm and 5 mm trocars and instruments for minimally invasive surgery advantages.

For reference, an overview of the key specifications of the da Vinci Si and Xi robot models, as well as the LAVH surgical procedure and associated technology, has been covered previously in the literature in great depth.^{11,12,13,14,15}

Materials and Methods

Given the objective of assessing the comparative costs and case times between the Senhance robot, the da Vinci robot and the LAVH cases, retrospective instrument cost, console times (Senhance and da Vinci), and operative time data were evaluated based on 28 sequential Senhance total laparoscopic hysterectomies (with and without adnexa removal) performed by 6 gynecologic surgeons in their robotic learning curve from 4 hospitals in the United States and Europe between June 2019 and January 2020.

(Table 1 and Table 2)

All surgery was performed by attending gynecological surgeons who were experienced laparoscopists prior to learning the Senhance technology. All surgeons using the Asensus Surgical Senhance robotic had previously used an Intuitive Surgical da Vinci robot.

Two retrospective cohorts of 56 da Vinci TLH cases (**Table 3**) and 34 standard laparoscopic LAVH cases, respectively, (**Table 4**) were extracted from the CAVAlytics[™] database (CAVA Robotics International, LLC). The CAVAlytics database aggregates operational, clinical, and financial robotic surgery data in connection with hospital

This article is protected by convright. All rights reserved.

robotic programs including other comparative minimally invasive laparoscopic data across service lines. The database is used to track efficiency and to guide and measure change management and program improvement at the surgeon, service line, and system-wide levels.

The da Vinci cohort included 10 surgeons and the LAVH cohort included 12 surgeons. Surgeons were selected based on their initial independent cases for both da Vinci and LAVH. All had completed residency training, were board certified and had laparoscopic privileges. The range of private practice experience was 3 to 30 years. Each surgeon was adding da Vinci TLH or LAVH as a new procedure thereby presenting two comparative cohorts, each with similar surgeon experience versus the Senhance initial case data. All cases reflect the surgeons' learning curves in independent practice.

When comparing the operation, which includes cuff closure at the console for a Senhance TLH and da Vinci TLH, the operative time (i.e., cut to close) for LAVH was selected as the best comparison because it includes the cuff closure and is a more accurate representation of the complete operation. Instrument costs include the lifelimited adapters and instruments such as graspers and energy devices (monopolar, bipolar and ultrasonic) as well as robotic vendor-specific drapes, seals and other singleuse disposable accessories. (**Table 5 and Table 6**) Patient drapes, sutures, gowns, gloves and other disposables used in all three cohorts were excluded from the supply cost analysis. Disposable single-use instruments such as energy devices (monpolar, bipolar, ultrasonic or other advanced sealing devices) were included in the costs of LAVH cases. Capital equipment costs for all procedures were not included in

instrumentation or supply costs. No protected health information was collected and the data was Institutional Review Board (IRB) exempt. With the exception of the co-author (S. McCarus), data was de-identified consistent with the US Centers for Medicare and Medicaid Services (CMS) Limited Data Set (LDS) guidelines,¹⁶ further preventing inference of surgeon / facility identities. As a real-world assessment, however, this study nevertheless has inherent limitations and flaws, addressed in the Limitations section.

Selection of Senhance TLH vs. da Vinci TLH vs Traditional LAVH

Senhance and da Vinci TLH procedures were compared to traditional LAVH rather than total laparoscopic hysterectomy for several pragmatic reasons. Standard straight stick laparoscopic TLH cases are under-represented in the CAVAlytics data base compared to standard LAVH cases. Additionally, these two techniques are more similar than they are different. Specifically, the steps of the surgery from port placement to sealing and transecting the uterine artery are similar. The biggest differences in techniques include the additional time of robotic set-up and docking for the Senhance and da Vinci cases and the surgeon return to the patient for the colpotomy and vaginal cuff closure in the LAVH.

Of note, all three techniques require an energy source (bipolar, monopolar, ultrasonic or other advanced seal/cut device) to seal and transect the infundibular, utero-ovarian and uterine artery pedicles, and each approach includes similar uterine manipulator placement, port placement and dissection techniques. The time interval selected for comparison in this analysis is slightly different but is designed to reflect the commonality

This article is protected by convright. All rights reserved

of technique: Senhance and da Vinci TLH console times include the cuff closure and are compared to the cut-to-close surgery time, whereas LAVH cut-to-close surgery time includes the cuff closure and is more similar to the console time when compared with Senhance and da Vinci TLH cases.

Data Source for da Vinci and Laparoscopic Cases

All da Vinci and LAVH data were obtained from the CAVAlytics data base, protected by applicable US Health Insurance Portability and Accountability Act (HIPAA) and the European Union General Data Protection Regulation (GDPR) privacy and security policies. Subject to data use agreements between the hospitals and CAVA, data is aggregated for independent benchmarking of key performance indicators without commercial biases from robotic or equipment vendors. Although average performance metrics are available from Intuitive Surgical, more detailed case- and surgeon-level data can be accessed and analyzed with the CAVAlytics database, which is not available in the public domain. Blinded and aggregated data is also used to establish robotic and laparoscopic surgery performance benchmarks for clinical, operational, and financial metrics. Data used herein did not include PHI and was IRB exempt. Endpoints included OR room time; console time (for Senhance and da Vinci); surgery time (for LAVH); and average instrument cost per case.

Vendor-specific supplies unique to the case (i.e., Asensus Surgical and Intuitive Surgical instruments and accessories) were included in the analysis, as well as unique disposable laparoscopic devices for LAVH cases. Supplies that are common to each of the three case types such as patient drapes, gloves, gowns, etc. were removed from the

This article is protected by convright. All rights reserved

analysis given that these supplies are similar across all modalities and do not represent incremental costs of minimally invasive surgery.

Statistical analysis included comparison of instrument costs (Senhance vs da Vinci vs LAVH), console times (Senhance vs da Vinci), and total operative time (Senhance vs da Vinci vs LAVH) using the nonparametric Mann-Whitney test. P-values were not adjusted for multiple comparisons and may not be interpreted as confirmatory but rather descriptive.

Senhance instruments were assigned a per-case instrument cost based on Asensus' commercial price guide, assuming an adaptor with 250 lives and an insert with 50 lives. Da Vinci instruments were similarly assigned a per-case instrument cost based on life limits of 10 uses each and Intuitive's commercial pricing, as of June 1, 2020. Instrument pricing is the same between the US and Europe for both vendors.

J.C.

Results

This is the first comparative assessment of the Senhance surgical system in benign hysterectomy. Summary analysis of the three cohorts is presented in **Table 7**. Findings demonstrated a median Senhance benign hysterectomy instrument cost savings per case of \$834 compared to similar da Vinci cases; this difference in median instrument costs between Senhance (\$559) and da Vinci (\$1,393) was statistically significant (p <0.001). Median benign hysterectomy console times for Senhance cases were 91.5 minutes compared to da Vinci console times at 96 minutes, which was not statistically

This article is protected by convright. All rights reserved

significant. It was noted that the total surgery elapsed time is longer for Senhance cases compared to the da Vinci cases, which can lead to less efficient use of OR resources. This is likely longer in the Senhance cases due to the surgeons' and crews' lack of experience with the new Senhance technology, compared with the da Vinci technology which they had used previously. In addition to the console time, which is surgeon dependent, the robotic set-up time, including port placement decisions and docking, are included in the total surgery elapsed time.

Compared to LAVH, Senhance median instrument costs unique to the case were \$559 compared to \$489 for LAVH, which was not statistically significant (p=0.336). The majority of cost in the LAVH cases is related to single-use disposable energy devices such as Ligasure, Enseal, or Harmonic Ace shears.

Additional findings include statistical significance of longer operating times for Senhance TLH (median 138.5 minutes) compared to LAVH (97.5 minutes) (*p-value<0.001*). However, when comparing the average *console time* of Senhance TLH (91.5 minutes) to the *operative time* of LAVH (101 minutes), there is no statistical significance (p-value = 0.6772).

Discussion

As is commonly known, the increase in robotic surgery adoption in gynecology has been challenged because of its associated high costs and longer operative times.^{17,18} It appears these historical barriers — higher per-case instrument costs and longer case times — are lowering as robotic surgeons become more experienced in robotic best

This article is protected by convright. All rights reserved

Page 12 of 28

practices.^{6,7} With the inclusion of a new technology such as Senhance, laparoscopic surgeons can leverage aspects of robotic surgery, such as instrument control, image stability, and 3D visualization, while maintaining the patient benefits of minimally invasive surgery together with surgeon familiarity of laparoscopic techniques^{19,20} at lower instrumentation costs – a key objective of facility's seeking to improve surgical contribution margins.

It bears repeating that, despite the fact that the Senhance hysterectomy operative times were significantly longer than the LAVH (due in large measure to increased time associated with docking, port placement, etc.), when comparing the core operative time – i.e., the console time of the Senhance hysterectomy vs. the LAVH operative time – the difference is not significant. Moreover, overall times have improved over the past 15 years with da Vinci technology as experience of surgeons and operative teams has increased.^{21,22} It can be reasonably posited, therefore, that the difference in overall operative team experience and will likely approach parity with da Vinci as port placement and docking times for Senhance improve; however, further assessment of this parameter is required.

Moreover, as previously discussed, the complete operation for all steps of the hysterectomy is most closely represented by *the console time of the robotic cases* compared to the *total time of the LAVH cases* in order to capture all steps of the technique including cuff closure.

This article is protected by convright. All rights reserved

Over the past decade, the decision by laparoscopic and open gynecologic surgeons to adopt robotic surgery has become increasingly widespread,^{2,6} with approximately 35% of all benign hysterectomies performed robotically in the US.^{17,23,24} This increase in robotic benign hysterectomy cases is a result of many factors, including surgeon preference attributed to robotic technologies as well as patient preferences.²⁵

Despite the widespread adoption of robotic surgery in gynecology, surgeons often struggle to maintain adequate robotic case volumes due to the recent decline in utilization of hysterectomy in benign conditions such as abnormal uterine bleeding. Notably, clinical quality and consistent surgical outcomes are not as favorable for low-volume robotic surgeons in gynecology (which is similarly true for other robotic service lines), thus increasing risk and decreasing patient safety.^{6,26} Longer case times and decreased operational efficiencies also result in increased costs. In fact, the prevalence of low-volume gyn surgeons – though performing the majority of gyn robotic procedures – contributes to higher overall surgical complication rates, longer lengths of stays, and higher cost of care compared to high-volume gyn surgeons.^{2,27}

Several other points bear illuminating. Regarding the comparative case times, even though this real-world study examined surgeons' initial independent LAVH case, it should be noted that these surgeons were already experienced in laparoscopy, meaning there is inherent efficiency expected. Set-up for traditional laparoscopy is also less demanding than robotic set-up for both da Vinci and Senhance.

A second point relates to the benefits associated with a surgeon being able to sit perioperatively. One recent study of 289 gynecologic surgeons cited that those who

This article is protected by convright. All rights reserved.

Page 14 of 28

managed robotic ergonomics effectively reported a lower rate of physical discomfort associated with performing surgery (p<0.05).²⁸ A third point of note is that, for surgeons learning the Senhance system, familiar port placement and instrumentation can speed learning curve adoption, while advantages of an open console, 3D visualization, and haptic feedback are at once a part of the

operation. Such capabilities fill a gap for common cases such as benign hysterectomy, which have been vigorously challenged historically as inappropriate da Vinci cases due to their associated higher cost.^{17,29,30} However, being able to achieve the advantages of robotics at a lower cost per case vs. da Vinci – and with costs similar to but not statistically lower than LAVH – suggests the Senhance system should garner further consideration.

Although not addressed in this analysis, a final parallel consideration involves the needs of lower-volume gyn surgeons. Specifically, many lower-volume surgeons (surgeons who perform less than an average of two robotic cases monthly) struggle with the increased technical demands required to transition from traditional laparoscopy to da Vinci robotic surgery, which often makes additional training and consistent robot utilization difficult to achieve and sustain.³¹ Such assessment may prove to be a worthwhile prospective exploration.

Limitations

As a retrospective, pragmatic, real-world assessment, the three patient populations herein assessed – although inclusive of cases performed by learning curve surgeons –

This article is protected by convright. All rights reserved

were similar but not strictly matched with regards to patient age, BMI, co-morbidities, uterine size / weight, presence of uterine or other pelvic pathology, length of stay, pain measures, and post-op complications. Despite the fact that these clinical endpoints were not available in the retrospective data sets, it is known that the surgeons selected did not exclusively perform Senhance, da Vinci or LAVH procedures over the timeframe analyzed. Other familiar approaches to hysterectomy (abdominal, vaginal, or laparoscopic) were utilized by each, suggesting some initial case selection bias. The bias in selecting *initial learning curve cases* was thus universal across each group, and most likely favored less clinically complex, and therefore more similar cases, selected by the surgeons for their first independent cases. The methodology of extracting the comparative robotic and LAVH data points used in this analysis from a proprietary database may also raise the question of potential bias as well as the fact that this methodology is not widely accepted in the medical literature, and presents an acknowledged limitation of real-world, pragmatic assessments.

An additional limitation is the small numbers of da Vinci and LAVH cases per surgeon; sometimes only one case was available from low-volume surgeons. Qualifying cases of initial independent cases with complete supply cost and time metrics were selected in an effort to achieve slightly larger cohorts of cases and surgeons, thereby gaining more data to compensate for the smaller individual surgeon numbers. Senhance first-time users also had previous robotic experience; it may have provided a more robust assessment had the Senhance users been a totally robotic-naïve population.

This article is protected by convright. All rights reserved

This assessment also relies on small sample sizes; 7 of 28 Senhance cases were performed by one laparoscopic surgeon (Table 4, surgeon E) whose case and console times were notably faster than the other 5 surgeons in this cohort, as well as faster than the average da Vinci cohort case times. While this surgeon's performance reduced the average Senhance case time in this limited series, it begs the question whether, and to what degree, experienced laparoscopic surgeons might achieve faster benign hysterectomy robotic case and console times on Senhance compared to the da Vinci robot, at least in their learning curve. To better assess this finding, future comparative research is called for inclusive of case-matched demographic, clinical, and cost comparisons. Additional areas of research should also include same-surgeon experience and comparison between Senhance TLH, laparoscopic TLH and da Vinci TLH.

Finally, this analysis was supported by industry, which opens the door to criticisms such as non-randomization and bias associated with the cost of consumables reported to be better for Senhance vs da Vinci cases.

Conclusion

On the basis of the findings in these initial, similar-case cohort comparisons, the Senhance system appears to offer a cost-effective minimally invasive surgical option in benign hysterectomy surgery compared to the da Vinci, with comparable case time; and

This article is protected by convright. All rights reserved

statistically comparable costs to LAVH albeit with longer case times, at least during the

learning curve period.

Disclosures

Dr. Coussons and Mr. Feldstein are employed by CAVA Robotics International, which received support from Asensus Surgical to perform independent analysis of data and drafting of this manuscript. The commercial source had no influence on either the data analytics or the drafting of the paper. Dr. McCarus has no conflicts of interest and has nothing to disclose.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Tables

ee perior

Table 1. Senhance Hospitals and Case Volumes

Location	#	of Senhance Cases
Site 1		7
Site 2		10
Site 3		9
Site 4		2
	TOTAL	28

Table 2. Asensus Surgical Senhance Data Summary

Date	•	Location 📼	Surgeon		Procedure	Cockpit Time (minutes)	Surgery Elapsed Time (minutes)	Instrument Cost
	5/19	Site 3	А		Total Hysterectomy	208	286	\$662
9/	5/19	Site 3	А		Total Hysterectomy	 153	 198	\$162
6/2	0/19	Site 3	А		Total Hysterectomy	 192	241	\$162
9/	5/19	Site 2	В		Total Hysterectomy	 125	 172	\$666
9/1	2/19	Site 2	В		Total Hysterectomy	100	163	\$624
8/2	9/19	Site 2	В		Total Hysterectomy	 69	 120	\$624
	6/19	Site 2	В		Total Hysterectomy	 47	 124	\$624
9/	5/19	Site 2	В		Total Hysterectomy	 123	 175	\$582
8/2	2/19	Site 2	В		Total Hysterectomy	 110	148	\$582
8/2	2/19	Site 2	В		Total Hysterectomy	 89	 131	\$582
9/2	6/19	Site 2	В		Total Hysterectomy	 101	 130	\$124
6/2	4/19	Site 3	С		Total Hysterectomy	118	173	\$204
10/2	8/19	Site 3	С		Total Hysterectomy	89	128	\$162
2/2	8/20	Site 3	С		Total Hysterectomy	91	149	\$162
7/1	2/19	Site 3	С		Total Hysterectomy	95	135	\$124
1/1	0/20	Site 3	С		Total Hysterectomy	95	151	\$120
12/	6/19	Site 3	С		Total Hysterectomy	92	155	\$120
10/	3/19	Site 2	D		Total Hysterectomy	80	136	\$162
10/	3/19	Site 2	D		Total Hysterectomy	90	141	\$162
1/2	8/20	Site 1	E		Total Hysterectomy	51	87	\$624
10/	8/19	Site 1	E		Total Hysterectomy	58	88	\$624
2/2	5/20	Site 1	E		Total Hysterectomy	48	93	\$578
1/	7/20	Site 1	E		Total Hysterectomy	22	84	\$540
10/1	5/19	Site 1	E		Total Hysterectomy	83	118	\$540
10/	1/19	Site 1	E		Total Hysterectomy	67	115	\$624
1/2	8/20	Site 1	E		Total Hysterectomy	65	103	\$580
1/2	3/20	Site 4	F		Total Hysterectomy	93	237	\$580
1/2	3/20	Site 4	F		Total Hysterectomy	 172	 209	\$162
		Average		_		 97.36	149.64	\$409.36
		Range				22-208 minutes	 84-286 minutes	\$120-\$666
						pelien		

Table 3. Intuitive Surgical da Vinci Data Summary

	Surgeon	V Procedure V	Console Time (minutes)	Surgery Elapsed Time (minutes)	Room Time (minutes) 🔝	Instrument o
7/26/18	G	ROBOTIC LAPAROSCOPIC ASSISTED HYSTERECTOMY VAGINAL WITH SALPINGECTOMY	91	102	141	\$1,393
10/23/17	G	ROBOTIC LAPAROSCOPIC TOTAL HYSTERECTOMY SALPINGECTOMIES	98	115	134	\$1,393
12/11/17	G	ROBOTIC LAPAROSCOPIC TOTAL HYSTERECTOMY SALPINGECTOMIES	80	96	129	\$1,393
6/7/18	G	ROBOTIC LAPAROSCOPIC TOTAL HYSTERECTOMY SALPINGECTOMIES	99	113	154	\$1,393
8/3/18	G	ROBOTIC LAPAROSCOPIC TOTAL HYSTERECTOMY SALPINGECTOMIES	117	129	155	\$1,393
10/18/18	G	ROBOTIC LAPAROSCOPIC TOTAL HYSTERECTOMY SALPINGECTOMIES	81	97	134	\$1,393
10/19/18	6	ROBOTIC LAPAROSCOPIC TOTAL HYSTERECTOMY SALPINGECTOMIES	113	121	153	\$1,393
12/20/18	G	ROBOTIC LAPAROSCOPIC TOTAL HYSTERECTOMY SALPINGECTOMIES	75	94	122	\$1,393
4/12/19	м	ROBOTIC LAPAROSCOPIC HYSTERECTOMY TOTAL UTERUS GREATER THAN 250 G W/ SALPINGECTOMY	100	108	144	\$1,393
7/19/19	н	ROBOTIC LAPAROSCOPIC TOTAL HYSTERECTOMY	38	56	100	\$1,125
11/1/19		ROBOTIC LAPAROSCOPIC TOTAL INSTRUCTIONY	46	61	88	\$1,125
11/8/19	н	ROBOTIC LAPAROSCOPIC TOTAL HYSTERECTOMY ROBOTIC LAPAROSCOPIC TOTAL HYSTERECTOMY SALPIN/RECTOMIES	50	68	88	\$1,393
5/3/19					111	
5/10/19	н	ROBOTIC LAPAROSCOPIC TOTAL HYSTREETOMY SALPINGECTOMIES	50	63	101	\$1,393
6/21/19	н	ROBOTIC LAPAROSCOPIC TOTAL HYSTERECTOMY SALPINGECTOMIES ROBOTIC LAPAROSCOPIC TOTAL HYSTERECTOMY SALPINGECTOMIES	79 55	96	138	\$1,393
7/12/19	н		55			
9/6/19	н	ROBOTIC LAPAROSCOPIC TOTAL HYSTERECTOMY SALPINGECTOMIES ROBOTIC LAPAROSCOPIC TOTAL HYSTERECTOMY SALPINGECTOMIES	74	93	124	\$1,125
	н				121	
10/18/19	н	ROBOTIC LAPAROSCOPIC TOTAL HYSTREETOMY SALPINGECTOMIES	61	71	104	\$1,125
11/8/19		ROBOTIC LAPAROSCOPIC TOTAL HYSTIRECTOMY SALPINGECTOMIES	62	71	92	\$1,125
11/22/19	н	ROBOTIC LAPAROSCOPIC TOTAL HYSTERECTOMY SALPINGECTOMIES	67	83	114	\$1,125
12/27/19	н	ROBOTIC LAPAROSCOPIC TOTAL HYSTERECTOMY SALPINGECTOMIES	58	70	97	\$1,125
4/29/19	н	ROBOTIC LAPAROSCOPIC TOTAL HYSTERECTOMY SALPINGOOPHORECTOMY	65	80	118	\$1,393
5/3/19	н	ROBOTIC LAPAROSCOPIC TOTAL HYSTREETOMY SALPINGOOPHORECTOMY	88	106	140	\$1,393
11/22/19	н	ROBOTIC LAPAROSCOPIC TOTAL HYSTREETOMY SALPINGOOPHORECTOMY	65	83	118	\$1,125
11/10/17	1	ROBOTIC LAPAROSCOPIC TOTAL HYSTERECTOMY SALPINGOOPHORECTOMY	106	116	153	\$1,393
12/1/17	1	ROBOTIC LAPAROSCOPIC TOTAL HYSTERECTOMY SALPINGOOPHORECTOMY	185	195	232	\$1,393
8/2/18	1	ROBOTIC LAPAROSCOPIC TOTAL HYSTERECTOMY SALPINGOOPHORECTOMY	125	135	183	\$1,393
12/19/19	I.	ROBOTIC LAPAROSCOPIC TOTAL HYSTERECTOMY SALPINGOOPHORECTOMY	101	109	134	\$1,125
1/4/18	1	ROBOTIC LAPAROSCOPIC TOTAL HYSTERECTOMY SALPINGECTOMIES	103	113	161	\$1,393
1/26/18	1	ROBOTIC LAPAROSCOPIC TOTAL HYSTERECTOMY SALPINGECTOMIES	100	112	147	\$1,393
3/16/18	1	ROBOTIC LAPAROSCOPIC TOTAL HYSTERECTOMY SALPINGECTOMIES	155	163	203	\$1,393
4/12/18	1	ROBOTIC LAPAROSCOPIC TOTAL HYSTERECTOMY SALPINGECTOMIES	90	104	135	\$1,393
5/11/18	1	ROBOTIC LAPAROSCOPIC TOTAL HYSTERECTOMY SALPINGECTOMIES	120	140	166	\$1,393
6/29/18		ROBOTIC LAPAROSCOPIC TOTAL HYSTERECTOMY SALPINGECTOMIES	110	125	156	\$1,393
7/6/18	1	ROBOTIC LAPAROSCOPIC TOTAL HYSTERECTOMY SALPINGECTOMIES	79	99	139	\$1,393
7/27/18	1.	ROBOTIC LAPAROSCOPIC TOTAL HYSTERECTOMY SALPINGECTOMIES	103	112	145	\$1,393
8/29/18	1	ROBOTIC LAPAROSCOPIC TOTAL HYSTERECTOMY SALPINGECTOMIES	139	147	195	\$1,393
9/26/18	1	ROBOTIC LAPAROSCOPIC TOTAL HYSTERECTOMY SALPINGECTOMIES	105	125	167	\$1,393
7/10/20	J	ROBOTIC ASSISTED HYSTERECTOMY, BILATERAL SALPINGECTOMY, CYSTOSCOPE	107	118	142	\$1,408
1/17/20	1	ROBOTIC ASSISTED HYSTERECTOMY, BILATERAL SALPINGECTOMY, OBSERVATIONAL CYSTOSCOPY	66	81	109	\$1,168
6/12/20	1	ROBOTIC ASSISTED HYSTERECTOMY, BILATERAL SALPINGECTOMY, OBSERVATIONAL CYSTOSCOPY	79	96	123	\$1,16
2/21/20	I.	ROBOTIC ASSISTED TOTAL LAPAROSCOPIC HYSTERECTOMY, BILATERAL SALPINGO OOPHORECTOMY, OBSERVATIONAL CYSTOSCOPY	72	93	124	\$1,168
7/13/20	K	ROBOTIC ASSISTED LAPAROSCOPIC HYSTERECTOMY BILATERAL SALPINGO OOPHORECTOMY ANTERIOR REPAIR CYSTOSCOPY	94	116	154	\$1,150
7/28/20	к	ROBOTIC ASSISTED TOTAL LAPAROSCOPIC HYSTERECTOMY BILATERAL SALPINGO-OOPHORECTOMY CYSTOSCOPY	108	123	153	\$1,270
2/12/20	ĸ	ROBOTIC ASSISTED TOTAL LAPAROSCOPIC HYSTERECTOMY BILATERAL SALPINGECTOMY CYSTOSCOPY	111	126	154	\$1,150
7/28/20	к	ROBOTIC ASSISTED TOTAL LAPAROSCOPIC HYSTERECTOMY BILATERAL SALPINGO-OOPHPRECTOMY CYSTOSCOPY	88	100	134	\$1,150
7/13/20	к	ROBOTIC ASSISTED TOTAL LAPAROSCOPIC HYSTERECTOMY LEFT SALPINGO-OOPHORECTOMY RIGHT SALPINGECTOMY CYSTOSCOPY	125	137	169	\$1,150
3/3/20	к	ROBOTIC TOTAL LAPAROSCOPIC HYSTERECTOMY, BILATERAL SALPINGO-OOPHORECTOMY, CYSTOSCOPY	124	142	166	\$1,150
7/23/20	L	ROBOTIC ASSISTED TOTAL LAPAROSCOPIC HYSTERECTOMY, BILATERAL SALPINGECTOMY, OBSERVATIONAL CYSTOSCOPY	56	76	116	\$1,172
6/12/20	м	ROBOTIC ASSISTED TOTAL LAPAROSCOPIC HYSTERECTOMY, BILATERAL SALPINECTOMY, OBSERVATONAL CYSTOSCOPY, REMOVAL OF SKIN TAGS ON LEFT THIGH AND RIGHT ABDOMINAL FOLD	138	148	176	\$1,401
3/10/20	N	ROBOTIC TOTAL LAPAROSCOPIC ASSISTED HYSTERECTOMY BILATERAL SALPINGO OOPHORECTOMY	129	142	225	\$1,360
7/8/20	0	ROBOTIC ASSISTED TOTAL LAPAROSCOPIC HYSTERECTOMY, BILATERAL SALPINGECTOMY	108	130	156	\$1,168
2/7/20	р	ROBOTIC ASSISTED LAPAROSCOPIC HYSTERECTOMY, BILATERAL SALPINGO-OOPHORECTOMY, CYSTOSCOPY	120	132	156	\$1,238
2/7/20	р	ROBOTIC ASSISTED LAPAROSCOPIC HYSTERECTOMY, BILATERAL SALPINGO-OOPHORECTOMY, CYSTOSCOPY	122	132	156	\$1,238
1/31/20	P	ROBOTIC ASSISTED TOTAL LAPAROSCOPIC HYSTERECTOMY, EXAM UNDER ANESTHESIA, BILATERAL SALPINGO-OOPHORECTOMY, CYSTOSCOPY, UTERAL STENTS	221	236	259	\$1,173
		Average	95	110	143	\$1,287
		kag	38-221 minutes	56-236 minutes	88-259 minutes	\$1125-\$1

Table 4. LAVH Data Summary

Date 🔍	Surgeon	▼ Procedure ▼	Cockpit Time (minutes)	🔻 rgery Elapsed Time (m 🔻	Room Time (minutes)	Instrument costs
6/24/20	Q	TOTAL LAPAROSCOPIC HYSTERECTOMY, BILATERAL SALPINGECTOMY, ASPIRATION OF RIGHT OVARIAN CYST, OBSERVATIONAL CYSTOSCOPY	NA	98	122	\$501
1/2/20	R	VAGINAL HYSTERECTOMY LAPAROSCOPIC ASSISTED (LAVH) EXCISION OF ABDOMINAL WALL MASS X2	NA	26	136	\$461
1/3/20	S	TOTAL LAPAROSCOPIC HYSTERECTOMY BILATERAL SALPINGO OOPHORECTOMY, EXCISION LEFT CHEST WALL NODULE	NA	88	118	\$515
1/6/20	т	LAPAROSCOPIC TOTAL HYSTERECTOMY, cystoscopy, bilateral salingoectomy	NA	86	111	\$517
6/11/20	U	LAPAROSCOPIC ASSISTED VAGINAL HYSTERECTOMY, BILATERAL SALPINGOOPHORECTOMY, ANTERIOR ANDPOSTERIOR REPAIR.	NA	123	164	\$500
2/13/20	v	LAPAROSCOPIC TOTAL HYSTERECTOMY WITH BILATERAL SALPINGECTOMY AND OBSERVATIONAL CYSTECTOMY	NA	154	176	\$490
5/29/20	v	TOTAL LAPAROSCOPIC HYSTERECTOMY, BILATERAL SALPINGECTOMY, OBSERVATIONAL CYSTOSCOPY	NA	137	166	\$476
5/1/20	w	LAPAROSCOPIC TOTAL HYSTERECTOMY	NA	133	170	\$510
5/21/20	x	LAPAROSCOPIC ASSISTED VAGINAL HYSTERECTOMY, BILATERAL SALPINGECTOMY	NA	88	125	\$524
5/29/20	x	LAPAROSCOPIC ASSISTED VAGINAL HYSTERECTOMY, RIGHT SALPINGO-OOPHORECTOMY.	NA	105	130	\$448
1/16/20	x	VAGINAL HYSTERECTOMY LAPAROSCOPIC ASSISTED (LAVH) BILATERAL SALPINGECTOMY	NA	129	168	\$460
2/20/20	Y	LAPAROSCOPIC ASSISTED VAGINAL HYSTERECTOMY BILATERAL SALPINGECTOMY	NA	134	172	\$485
3/5/20	Y	LAPAROSCOPIC TOTAL HYSTERECTOMY BILATERAL SALPINGECTOMY	NA	108	145	\$460
2/20/20	Y	TOTAL LAPAROSCOPIC ASSISTED HYSTERECTOMY BILATERAL SALPINGECTOMY	NA	95	128	\$459
1/16/20	Y	TOTAL LAPAROSCOPIC HYSTERECTOMY BILATERAL SALPINGECTOMIES	NA	149	187	\$489
2/6/20	Y	VAGINAL HYSTERECTOMY LAPAROSCOPIC ASSISTED (LAVH) BILATERAL SALPINGO- OOPHURECTOMY, ANTERIOR AND POSTERIOR REPAIR	NA	111	156	\$467
3/5/20	Y	VAGINAL HYSTERECTOMY LAPAROSCOPIC ASSISTED BILATERAL SALPINGECTOMIES	NA	84	131	\$522
2/20/20	Z	VAGINAL HYSTERECTOMY LAPAROSCOPIC ASSISTED (LAVH) BILATERAL SALPINGECTOMY	NA	115	149	\$456
3/9/20	AA	TOTAL LAPAROSCOPIC HYSTERECTOMY, BILATERAL SALPINGECTOMY, CYSTOSCOPY	NA	180	215	\$489
10/1/18	AB	LAPAROSCOPIC ASSISTED HYSTERECTOMY VAGINAL	NA	69	126	\$492
11/9/18	AB	LAPAROSCOPIC ASSISTED HYSTERECTOMY VAGINAL	NA	77	107	\$480
11/30/18	AB	LAPAROSCOPIC ASSISTED HYSTERECTOMY VAGINAL	NA	85	124	\$509
3/18/19	AB	LAPAROSCOPIC ASSISTED HYSTERECTOMY VAGINAL	NA	90	122	\$483
3/22/19	AB	LAPAROSCOPIC ASSISTED HYSTERECTOMY VAGINAL	NA	76	113	\$487
4/22/19	AB	LAPAROSCOPIC ASSISTED HYSTERECTOMY VAGINAL	NA	132	171	\$504
10/25/19	AB	LAPAROSCOPIC ASSISTED HYSTERECTOMY VAGINAL	NA	114	147	\$518
11/15/19	AB	LAPAROSCOPIC ASSISTED HYSTERECTOMY VAGINAL	NA	76	109	\$454
11/18/19	AB	LAPAROSCOPIC ASSISTED HYSTERECTOMY VAGINAL	NA	74	102	\$500
1/24/20	AB	LAPAROSCOPIC ASSISTED HYSTERECTOMY VAGINAL	NA	60	100	\$506
6/26/20	AB	LAPAROSCOPIC ASSISTED HYSTERECTOMY VAGINAL	NA	85	121	\$456
6/25/18	AB	LAPAROSCOPIC ASSISTED HYSTERECTOMY VAGINAL WITH SALPINGOOPHORECTOMY	NA	105	143	\$478
6/21/18	AB	LAPAROSCOPIC ASSISTED HYSTERECTOMY VAGINAL WITH SALPINGECTOMY	NA	99	119	\$499
2/8/19	AB	LAPAROSCOPIC ASSISTED HYSTERECTOMY VAGINAL WITH SALPINGECTOMY	NA	66	93	\$470
6/7/19	AB	LAPAROSCOPIC ASSISTED HYSTERECTOMY VAGINAL WITH SALPINGECTOMY	NA	97	129	\$524
		Average		101	138	\$488
		Range		60-180 minutes	93-215 minutes	\$448-\$524

re perie

Table 5. Asensus Surgical Senhance Instrument Costs (US / EU; in \$)

US Catalog #	CF #	Catalog Name	US List Price	Per Use Cost	US Catalog #	CF #	Catalog Name	US List Price	Per Use Cos
		3 mm Monopolar Instruments					5 mm Passive Instruments		
x0007212	210-11010	Monopolar Maryland Dissector (Ø 3 mm x 280 mm)	\$1,450	\$29	X0007002	200-11026	Allis Grasper (Ø 5 mm x 310 mm)	\$1,200	\$24
x9007212	210-21010	Adapter, Monopolar 3 mm Maryland Dissector (Ø 3 mm x 280 mm)	\$4,500	\$18	X9007002	200-21026	Adapter, Allis Grasper (Ø 5 mm x 310 mm)	\$4,500	\$18
x0007215	210-11012	Monopolar Curved Metzenbaum Scissors (Ø 3 mm x 280 mm)	\$1,200	\$24	X0007005	200-11030	Johan Grasper (Ø 5 mm x 310 mm)	\$1,200	\$24
x9007215	210-21012	Adapter, Monopolar 3 mm Curved Metzenbaum Scissors (Ø 3 mm x 280 mm)	\$4,500	\$18	X9007005	200-21030	Adapter, Johan Grasper (Ø 5 mm x 310 mm)	\$4,500	\$18
X9007213	210-21012	2 mm Biooliv Instruments	34,300	210	X0007008	200-21030	Kocher Grasper (Ø 5 mm x 310 mm)	\$1,200	\$24
		a min oppiæ insodmenta	I		X9007008	200-21034	Adapter, Kocher Grasper (Ø 5 mm x 310 mm) Adapter, Kocher Grasper (Ø 5 mm x 310 mm)	\$4,500	
X0007309	220-11010	Bipolar Mayland Dissector Insert (Ø 3 mm x 280 mm)	\$1,250	\$25	X0007011	200-21034	Adapter, Kocher Gräsper (Ø 5 mm x 310 mm) Strong Gräsper (Ø 5 mm x 310 mm)	\$4,500	\$18
X9007309	220-21010	Adapter, Bipolar 3 mm Maryland Dissector (Ø 3 mm x 280 mm)	\$4,500	\$18					\$24
X0007306	220-11012	Bipolar Grasping Forceps Insert (Ø 3 mm x 280 mm)	\$1,250	\$25	X9007011	200-21038	Adapter, Strong Grasper (Ø 5 mm x 310 mm)	\$4,500	\$18
X9007306	220-21012	Adapter, Bipolar 3 mm Grasping Forceps (Ø 3 mm x 280 mm)	\$4,500	\$18	X0007014	200-11042	Mixter Dissector (Ø 5 mm x 310 mm)	\$1,200	\$24
X0007303	220-11014	Bipolar 3 mm Shaft (Ø 3 mm x 280 mm)	\$250		X9007014	200-21042	Adapter, Mixter Dissector (Ø 5 mm x 310 mm)	\$4,500	\$18
		3 mm Passive instruments			X0007017	200-11018	Babcock Forceps (Ø 5 mm x 310 mm)	\$1,200	\$24
X0007203	200-11010	Atraumatic Single Action Grasper (Ø 3 mm x 280 mm)	\$1,450	\$29	X9007017	200-21018	Adapter, Babcock Forceps (Ø 5 mm x 310 mm)	\$4,500	\$18
X9007203	200-21010	Adapter, 3 mm Atraumatic Single Action Grasper (Ø 3 mm x 280 mm)	\$4,500	\$18	X0007020	200-11045	Needle Holder Right (Ø 5 mm x 310 mm)	\$1,200	\$24
X0007206	200-11012	Cobra Grasper (Ø 3 mm x 280 mm)	\$1,450	\$29	X9007020	200-21045	Adapter, Needle Holder Right (Ø 5 mm x 310 mm)	\$4,500	\$18
X9007206	200-21012	Adapter, 3 mm Cobra Grasper (Ø 3 mm x 280 mm)	\$4,500	\$18	X0007023	200-11048	Needle Holder Left (Ø 5 mm x 310 mm)	\$1,200	\$24
X0007209	200-11014	DeBakey Grasper (Ø 3 mm x 280 mm)	\$1,450	\$29	X9007023	200-21048	Adapter, Needle Holder Left (Ø 5 mm x 310 mm)	\$4,500	\$18
X9007209	200-21014	Adapter, 3 mm DeBakey Grasper (Ø 3 mm x 280 mm)	\$4,500	\$18	X0007038	200-11050	Fundus Grasper (Ø 5 mm x 310 mm)	\$1,200	\$24
X0007218	200-11016	Needle Holder (Ø 3 mm x 280 mm)	\$1,450	\$29	X9007038	200-21050	Adapter, Fundus Grasper (Ø 5 mm x 310 mm)	\$4,500	\$18
X9007218	200-21016	Adapter, 3 mm Needle Holder (Ø 3 mm x 280 mm)	\$4,500	\$18	X0007003	200-11052	Allis Grasper, Long (Ø 5 mm x 410 mm)	\$1,200	\$24
ASCOTLE	100-11010	5 mm Mogopolar Instruments	54,500	910	X9007003	200-21052	Adapter, Allis Grasper, Long (Ø 5 mm x 410 mm)	\$4,500	\$18
X0007026	210-11018	Monopolar Curved Metzenbaum Scissors (Ø 5 mm x 310 mm)	\$1,000	\$20	X0007006	200-11054	Johan Grasper, Long (Ø 5 mm x 410 mm)	\$1,200	\$24
X9007026	210-21018	Adapter, Monopolar Curved Metzenbaum Scissors (Ø 5 mm x 310 mm)	\$4,500		X9007006	200-21054	Adapter, Johan Grasper, Long (Ø 5 mm x 410 mm)	\$4,500	\$24
X0007029	210-21018		\$4,500	\$18	X0007009	200-21054		\$4,500	
		Monopolar Curved Metzenbaum Scissors Short Tip (Ø 5 mm x 310 mm)		\$20	X0007009 X9007009		Kocher Grasper, Long (Ø 5 mm x 410 mm)		\$24
X9007029	210-21022	Adapter, Monopolar Curved Metzenbaum Scissors Short Tip (Ø 5 mm x 310 mm)	\$4,500	\$18		200-21056	Adapter, Kocher Grasper, Long (Ø 5 mm x 410 mm)	\$4,500	\$18
X0007032	210-11026	Monopolar Maryland Dissector (Ø 5 mm x 310 mm)	\$1,200	\$24	X0007012	200-11058	Strong Grasper, Long (Ø 5 mm x 410 mm)	\$1,200	\$24
X9007032	210-21026	Adapter, Monopolar Maryland Dissector (Ø 5 mm x 310 mm)	\$4,500	\$18	X9007012	200-21058	Adapter, Strong Grasper, Long (Ø 5 mm x 410 mm)	\$4,500	\$18
X0007035	210-11030	Monopolar L-Hook Electrode (Ø 5 mm x 310 mm)	\$1,200	\$24	X0007015	200-11060	Mixter Dissector, Long (Ø 5 mm x 410 mm)	\$1,200	\$24
X9007035	210-21030	Adapter, Monopolar L-Hook Electrode (Ø 5 mm x 310 mm)	\$4,500	\$18	X9007015	200-21060	Adapter, Mixter Dissector, Long (Ø 5 mm x 410 mm)	\$4,500	\$18
X0007027	210-11032	Monopolar Curved Metzenbaum Scissors, Long (Ø 5 mm x 410 mm)	\$1,000	\$20	X0007018	200-11022	Babcock Forceps, Long (Ø 5 mm x 410 mm)	\$1,200	\$24
X9007027	210-21032	Adapter, Monopolar Curved Metzenbaum Scissors, Long (Ø 5 mm x 410 mm)	\$4,500	\$18	X9007018	200-21022	Adapter, Babcock Forceps, Long (Ø 5 mm x 410 mm)	\$4,500	\$18
X0007030	210-11034	Monopolar Curved Metzenbaum Scissors Short Tip, Long (Ø 5 mm x 410 mm)	\$1,000	\$20	X0007021	200-11062	Needle Holder Right, Long (Ø 5 mm x 410 mm)	\$1,200	\$24
X9007030	210-21034	Adapter, Monopolar Curved Metzenbaum Scissors Short Tip, Long (Ø 5 mm x 410 mm	\$4,500	\$18	X9007021	200-21062	Adapter, Needle Holder Right, Long (Ø 5 mm x 410 mm)	\$4,500	\$18
X0007033	210-11036	Monopolar Maryland Dissector, Long (Ø 5 mm x 410 mm)	\$1,200	\$24	X0007024	200-11064	Needle Holder Left, Long (Ø 5 mm x 410 mm)	\$1,200	\$24
X9007033	210-21036	Adapter, Monopolar Maryland Dissector, Long (Ø 5 mm x 410 mm)	\$4,500	\$18	X9007024	200-21064	Adapter, Needle Holder Left, Long (Ø 5 mm x 410 mm)	\$4,500	\$18
X0007036	210-11038	Monopolar L-Hook Electrode, Long (Ø 5 mm x 410 mm)	\$1,200	\$24	X0007039	200-11066	Fundus Grasper, Long (Ø 5 mm x 410 mm)	\$1,200	\$24
X9007036	210-21038	Adapter, Monopolar L-Hook Electrode, Long (Ø 5 mm x 410 mm)	\$4,500	\$18	X9007039	200-21066	Adapter, Fundus Grasper, Long (Ø 5 mm x 410 mm)	\$4,500	\$18
		5 mm Bipolar instruments					Ultratonic		
X0005146	220-11017	Bipolar Large Grasping Forceps Insert (Ø 5 mm x 310 mm)	\$1,100	\$22	X9007619	300-11010	Senhance Ultrasonic Dissector (Ø 5.5 mm x 370 mm) (box of 10)	\$5,000	\$500
X9000056	220-21017	Adapter, Bipolar Lanze Grasping Forceps (Ø 5 mm x 310 mm)	\$4,500	\$18	X9007620	300-11011	Senhance Ultrasonic Transducer	\$2,500	0000
X0005147	220-11015	Bipolar Curved Grasping Forceps Insert (Ø 5 mm x 310 mm)	\$1,100	\$22	X9007618	300-21011	Adapter, Senhance Ultrasonic	\$10,000	
X900057	220-21015	Adapter, Bipolar Curved Grasping Forceps (Ø 5 mm x 310 mm)	\$4,500	\$18	X9007621	300-01010	Senhance Ultrasonic Generator	\$20,000	
X0005149	220-21015	Bipolar Maryland Dissector Insert (Ø 5 mm x 310 mm)	\$1,100	\$18	X9007621 X9007641	300-01010	Senhance Litrasonic Generator	\$1,000	
X9000058	220-21019				X9007655	300-01012	Senhance Ultrasonic Generator Power Cable (Type B)		
		Adapter, Bipolar Maryland Dissector (Ø 5 mm x 310 mm)	\$4,500	\$18	X9007655	300-01020	Sennance Ultrasonic Generator Power Cable (Type B)	\$150	
X0005148	220-11021	Bipolar Curved Scissors Insert (Ø 5 mm x 310 mm)	\$1,100	\$22			Drapes		
X9000059	220-21021	Adapter, Bipolar Curved Scissors (Ø 5 mm x 310 mm)	\$4,500	\$18	X0005151	800-91001	Senhance Manipulator Arm Sterile Drapes (box of 10 sterile 3-packs)	\$2,000	200
X0005150	220-11023	Bipolar Shaft (Ø 5 mm x 310 mm)	\$200		X0005244	800-91002	Senhance Manipulator Arm Sterile Drapes (box of 10 individual sterile drapes)	\$1,000	100
							Accessories	-	
					X0005436	800-01013	Velcro kit for sterile drape attachment (box of 10)	\$150	
					X0005712	800-01014	InstruSafe Sterilization Tray for Senhance Instruments and Adapters (49.8cm L x 24.4cm W x 10.5cm H)	\$4,500	
					X0007617	800-01015	InstruSafe Sterilization Tray for Senhance Endoscope Adapter (49.8cm L x 24.4cm W x 6.0cm H)	\$2,500	
					X9000067	800-01018	Cockpit Handle Inserts (box of 2)	\$300	
					X0005202	800-01019	Monopolar Cable	\$500	
					X0005152	800-01020	Bipolar Cable - Erbe	\$500	
					X0007819	800-01021	Bipolar Cable - Covidien/Valleylab/CONMED	\$500	
					X0008311	800-01003	Monopolar Cable, 4mm Socket, for Erbe, 5m	\$500	
					X0008312	800-01004	Monopolar Cable, 4mm Socket, for 8mm Bovie, 5m	\$500	
	-				X0008312 X0008313	800-01004	Monopolar Cable, 4mm Socke, for amm Bovie, 5m Monopolar Neutral Cable, for Erbe Nessy, 4.5m	\$500	
	-				X0008313 X0008314	800-01005	Monopolar Neutral Cable, for Erbe Nessy, 4.5m Monopolar Neutral Cable, International, REM, 4.5m	\$500	
	-				X0008314 X0008315	800-01006			
						800-01007	Bipolar Cable, U.S. Forceps (angled), for Erbe, 5 m	\$500	1
	-								
					X0008316		Bipolar Cable, U.S. Forceps (angled w/ cap), 5m	\$500	
					x0008316 x0008272 x0008254	800-01008 800-01023 800-01024	Bipolar Cable, U.S. Forceps (angled w/ cap), 5m 3D Glasses 3D Clip-ons	\$500 \$50 \$50	

Table 6. Intuitive Surgical da Vinci Instrument Costs (US / EU; in \$)

Commonly used instruments and accessories	Size	Part	Price	Uses	Quantity	Per Use
Hot Shears	8mm	470179	\$3,200	10	1	\$ 320.00
Permanent Cautery Hook	8mm	470183	\$2,000	10	1	\$ 200.00
Permanent Cautery Hook Spatula	8mm	470184	\$2,000	10	1	\$ 200.00
Maryland Bipolar Forceps	8mm	470172	\$2,700	10	1	\$ 270.00
Fenestrated Bipolar Forceps	8mm	470205	\$2,700	10	1	\$ 270.00
ForceBipolar	8mm	470405	\$3,100	10	1	\$ 310.00
Curved Bipolar Dissector	8mm	470344	\$2,700	10	1	\$ 270.00
Micro Bipolar Forceps	8mm	470171	\$2,900	10	1	\$ 290.00
Long Bipolar Grasper	8mm	470400	\$2,900	10	1	\$ 290.00
Medium Large Clip Applier	8mm	470327	\$1,400	100	1	\$ 14.00
Large Clip Applier	8mm	470230	\$1,400	100	1	\$ 14.00
Small Clip Applier	8mm	470401	\$2,800	100	1	\$ 28.00
Large Needle Driver	8mm	470006	\$2,200	10	1	\$ 220.00
Mega SutureCut Needle Driver	8mm	470309	\$2,400	10	1	\$ 240.00
Mega Needle Driver	8mm	470194	\$2,200	10	1	\$ 220.00
Large SutureCut Needle Driver	8mm	470296	\$2,400	10	1	\$ 240.00
ProGrasp Forceps	8mm	470093	\$2,200	10	1	\$ 220.0
Tenaculum Forceps	8mm	470207	\$2,200	10	1	\$ 220.0
Long Tip Forceps	8mm	470048	\$2,800	10	1	\$ 280.0
Tip-Up Fenestrated Grasper	8mm	470347	\$2,200	10	1	\$ 220.0
Small Graptor (Grasping Retractor)	8mm	470318	\$2,400	10	1	\$ 240.0
Cadiere Forceps	8mm	470049	\$2,100	10	1	\$ 210.0
Cobra Grasper	8mm	470190	\$2,200	10	1	\$ 220.00
Potts Scissors	8mm	470001	\$1,950	10	1	\$ 195.0
Round Tip Scissors	8mm	470007	\$2,035	10	1	\$ 203.5
Resano Forceps	8mm	470181	\$2,200	10	1	\$ 220.0
Atrial Retractor Short Right	8mm	470246	\$3,500	10	1	\$ 350.0
Dual Blade Retractor	8mm	470249	\$3,500	10	1	\$ 350.0
Black Diamond Micro Forceps	8mm	470033	\$3,000	15	1	\$ 200.00
Cardiac Probe Grasper	8mm	470215	\$2,400	10	1	\$ 240.00
DeBakey Forceps	8mm	470036	\$2,000	10	1	\$ 200.0
Harmonic ACE Curved Shears	8mm	480275	\$3,270	1	6	\$ 545.0
EndoWrist Suction Irrigator	8mm	480299	\$1,590	1	6	\$ 265.0
Vessel Sealer	8mm	480322	\$3,570	1	6	\$ 595.0
Arm Drape	NA	470015	\$1,040	NA	20	\$ 52.0
Column Drape	NA	470341	\$360	NA	20	\$ 18.0
5mm - 8mm Universal Seal	5-8mm	470361	\$180	NA	10	\$ 18.0
8mm Cannula	8mm	470002	\$600	NA	1	NA
8mm Cannula, Long	8mm	470004	\$650	NA	1	NA
8mm Blunt Obturator	8mm	470008	\$550	NA	1	NA
8mm Blunt Obturator, Long	8mm	470009	\$590	NA	1	NA
8mm Bladeless Obturator	8mm	470357	\$150	NA	6	\$ 25.0
8mm Bladeless Obturator, Long (Disposable)	8mm	470358	\$150	NA	6	\$ 25.0
8mm Bladeless Obturator (Optical)	8mm	470358	\$180	NA	6	\$ 30.0
8mm Bladeless Obturator, Long (Optical)	8mm	470360	\$180	NA	6	\$ 30.0

Table 7. Summary Analysis

	Senhand	ce (n=26)	Da Vin	vi (n=56)	
Parameter	Median	IQR	Median	IQR	P-Value
Console Time (min)	91.5	68-114	96	69.5-122	0.898
Surgery Elapsed Time (min)	138.5	119-172.5	108.5	88-127.5	< 0.001
Instrument Costs (\$)	\$559	\$162-624	\$1,393	\$1150-1393	< 0.001
Median Cost Savings by Senhance (\$)		-\$834			NA
and the Desults of Contained in 1 AVIII (in Desults	dam Haratawa				
nparative Results of Senhance vs. LAVH (in Ben			1 414	(
Parameter	Median	lQR	Median	(n=34) IQR	P-Value
Console Time (min)	91.5	68-114	NA	NA	NA
Surgery Elapsed Time (min)	138.5	119-172.5	97.5	84-123	<0.001
Instrument Costs (\$)	\$559	\$162-624	\$498	\$467-506	0.336
Median Cost Savings by LAVH (\$)	4009	\$102-024		\$407-500	0.330 NA
					INA

Page 24 of 28

References

- 1. Bouquet de Joliniere J, Librino A, Dubuisson JB, Khomsi F, Ben Ali N, Fadhlaoui A, Ayoubi JM, Feki A. *Robotic Surgery in Gynecology*. Front Surg. 2016 May 2;3:26. doi: 10.3389/fsurg.2016.00026. PMID: 27200358; PMCID: PMC4852174.
- 2. Morgan DM, Kamdar NS, et al. Nationwide trends in the utilization of and payments for hysterectomy in the United States among commercially insured women. *Am J Obstet Gynecol.* 2018 Apr;218(4):425.e1-425.e18. doi: 10.1016/j.ajog.2017.12.218. Epub 2017 Dec 26. PMID: 29288067; PMCID: PMC5931386.
- 3. Ahmad A, Ahmad ZF, Carleton JD, Agarwala A. Robotic surgery: current perceptions and the clinical evidence. *Surg Endosc.* 2017 Jan;31(1):255-263. doi: 10.1007/s00464-016-4966-y. Epub 2016 May 18. PMID: 27194264.
- 4. Abitbol J, Cohn R, et al. Minimizing pain medication use and its associated cost following robotic surgery. *Gynecol Oncol.* 2017 Jan;144(1):187-192. doi: 10.1016/j.ygyno.2016.11.014. Epub 2016 Nov 11. PMID: 27839789.
- 5. Giep BN, Giep HN, Hubert HB. Comparison of minimally invasive surgical approaches for hysterectomy at a community hospital: roboticassisted laparoscopic hysterectomy, laparoscopic-assisted vaginal hysterectomy and laparoscopic supracervical hysterectomy. *J Robot Surg.* 2010;4(3):167-175. doi:10.1007/s11701-010-0206-y
- 6. Feldstein J, Coussons H. Achieving robotic program best practice performance and cost versus laparoscopy: Two case studies define a framework for optimization. Int J Med Robot. 2020 Jun;16(3):e2098. doi: 10.1002/rcs.2098. Epub 2020 Mar 17. PMID: 32096901.
- Feldstein J, Coussons, H. Achieving Financial Optimization of a da Vinci Robotic Program While Achieving Best Clinical Outcomes. Chapter 14; *Robotic Surgery, Second Edition*. Gharagozloo, Patel, Giulianotti et al. (Eds): Springer Nature. In press.
- 8. Deimling TA, Eldridge JL, et al. Randomized controlled trial comparing operative times between standard and robot-assisted laparoscopic hysterectomy. *Int J Gynaecol Obstet*. 2017;136(1):64-69. doi:10.1002/ijgo.12001
- 9. Lönnerfors C, Reynisson P, Persson J. A randomized trial comparing vaginal and laparoscopic hysterectomy vs robot-assisted hysterectomy. J Minim Invasive Gynecol. 2015 Jan;22(1):78-86. doi: 10.1016/j.jmig.2014.07.010. Epub 2014 Jul 19. PMID: 25045857.

 Kaaki B, Lewis E, Takallapally S, Cleveland B. Direct cost of hysterectomy: comparison of robotic versus other routes. J Robot Surg. 2020 Apr;14(2):305-310. doi: 10.1007/s11701-019-00982-7. Epub 2019 Jun 5. PMID: 31165995.

- 11. Gosrisirikul C, Don Chang K, Raheem AA, Rha KH. New era of robotic surgical systems. Asian J Endosc Surg. 2018 Nov;11(4):291-299. doi: 10.1111/ases.12660. Epub 2018 Oct 10. PMID: 30306719
- 12. Simpson KM, Advincula AP. The Essential Elements of a Robotic-Assisted Laparoscopic Hysterectomy. Obstet Gynecol Clin North Am. 2016 Sep;43(3):479-93. doi: 10.1016/j.ogc.2016.04.008. PMID: 27521880.
- Eggemann H, Ignatov A, Frauchiger-Heuer H, Amse T, Costa SD. Laparoscopic-assisted vaginal hysterectomy versus vaginal hysterectomy for benign uterine diseases: a prospective, randomized, multicenter, double-blind trial (LAVA). Arch Gynecol Obstet. 2018 Feb;297(2):479-485. doi: 10.1007/s00404-017-4647-7. Epub 2018 Jan 4. PMID: 29302807
- 14. Pillarisetty LS, Mahdy H. Vaginal Hysterectomy. 2020 Aug 23. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan–. PMID: 32119369.
- Koukourikis P, Rha KH. Robotic surgical systems in urology: What is currently available? Investig Clin Urol. 2021 Jan;62(1):14-22. doi: 10.4111/icu.20200387. PMID: 33381927; PMCID: PMC7801159.
- 16. Centers for Medicare & Medicaid Services. CMS.gov; <u>https://www.cms.gov/Research-Statistics-Data-and-Systems/Files-for-Order/LimitedDataSets</u>. Accessed October 1, 2020
- 17. The American College of Obstetricians and Gynecologists. Committee opinion # 628: robotic surgery in gynecology. *Obstet Gynecol.* 2015 Mar; 125(3):760-7; Reaffirmed 2017
- 18. Varghese A, Doglioli M, Fader AN. Updates and Controversies of Robotic-Assisted Surgery in Gynecologic Surgery. Clin Obstet Gynecol. 2019 Dec;62(4):733-748. doi: 10.1097/GRF.000000000000489. PMID: 31524659; PMCID: PMC6944326.
- 19. Samalavicius NE, Janusonis V, et al. Robotic surgery using Senhance[®] robotic platform: single center experience with first 100 cases. J Robot Surg. 2020 Apr;14(2):371-376. doi: 10.1007/s11701-019-01000-6. Epub 2019 Jul 12. PMID: 31301021.
- 20. Montlouis-Calixte J, Ripamonti B, et al. Senhance 3-mm robot-assisted surgery: experience on first 14 patients in France. *J Robot Surg.* 2019 Oct;13(5):643-647. doi: 10.1007/s11701-019-00955-w. Epub 2019 Apr 5. PMID: 30953270.
- 21. Geller E, Lin FC, Mathews C. Analysis of robotic performance times to improve operative efficiency . *J Minim Invasive Gynecol.* Jan-Feb 2013;20(1):43-8. doi: 10.1016/j.jmig.2012.08.774.Epub 2012 Nov 8.
- 22. Souders CP, Catchpole KR, Wood LN, et al. Reducing operating room turnover time for robotic surgery using a motor racing pit stop model. *World J Surg.* 2017;41(8):1943-1949. doi:10.1007/s00268-017-3936-4
- 23. Overview of Nationwide Inpatient Sample (NIS); Healthcare Cost and Utilization Project (HCUP, Agency for Healthcare Research and Quality). <u>https://www.hcupus.ahrq.gov/nisoverview.jsp.</u> Accessed October 1, 2020.
- 24. Soucient[®] database Truven Health Analytics (Formerly Thomson-Reuters).

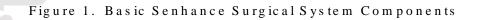
- 25. Van Koughnett JA, Jayaraman S, et al. Are there advantages to robotic-assisted surgery over laparoscopy from the surgeon's perspective? *J Robot Surg.* 2009 Jun;3(2):79-82. doi: 10.1007/s11701-009-0144-8. Epub 2009 Jun 3. PMID: 27638219.
- 26. Doll KM, Milad MP, Gossett DR. Surgeon volume and outcomes in benign hysterectomy. *J Minim Invasive Gynecol.* 2013 Sep-Oct;20(5):554-61. doi:10.1016/j.jmig.2013.03.005. Epub 2013 Apr 23. PMID: 23622760.
- 27. Ruiz MP, Chen L, Hou JY, Tergas AI, St Clair CM, Ananth CV, Neugut AI, Hershman DL, Wright JD. Outcomes of Hysterectomy Performed by Very Low-Volume Surgeons. *Obstet Gynecol.* 2018 Jun;131(6):981-990. doi: 10.1097/AOG.00000000002597. PMID: 29742669; PMCID: PMC5970072.
- 28. Lee MR, Lee GI. Does a robotic surgery approach offer optimal ergonomics to gynecologic surgeons?: a comprehensive ergonomics survey study in gynecologic robotic surgery. *J Gynecol Oncol.* 2017 Sep;28(5):e70. doi: 10.3802/jgo.2017.28.e70. Epub 2017 Jun 23. PMID: 28657231; PMCID: PMC5540729.
- 29. Wright JD, Ananth CV, et al. Robotically assisted vs laparoscopic hysterectomy among women with benign gynecologic disease. *JAMA*. 2013 Feb 20;309(7):689-98. doi: 10.1001/jama.2013.186. PMID: 23423414.
- 30. The American College of Obstetricians and Gynecologists: Committee Opinion. "Choosing the Route of Hysterectomy for Benign Disease," Number 701; June 2017; Reaffirmed 2019.
- 31. Vree FE, Cohen SL, Chavan N, Einarsson JI. The impact of surgeon volume on perioperative outcomes in hysterectomy. *JSLS*. 2014;18(2):174-181. doi:10.4293/108680813X13753907291594

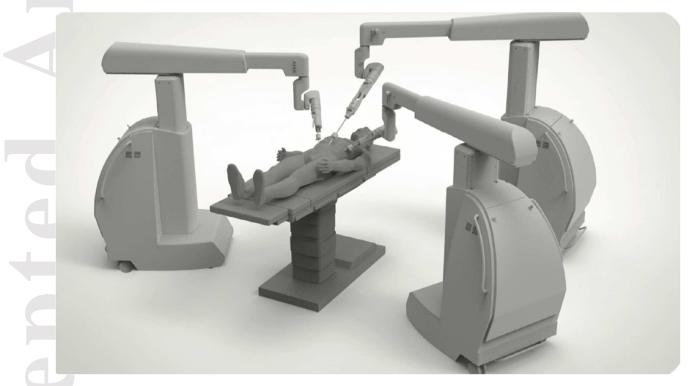
Comparative Results of Semiance vs. da vinci (in i	Senigh hysteret
	Senhance
Parameter	Median
Console Time (min)	91.5
Surgery Elapsed Time (min)	138.5
Instrument Costs (\$)	\$559
Median Cost Savings by Senhance (\$)	

Comparative Results of Senhance vs. da Vinci (in Benign Hysterec

Comparative Results of Senhance vs. LAVH (in Benign Hysterecto

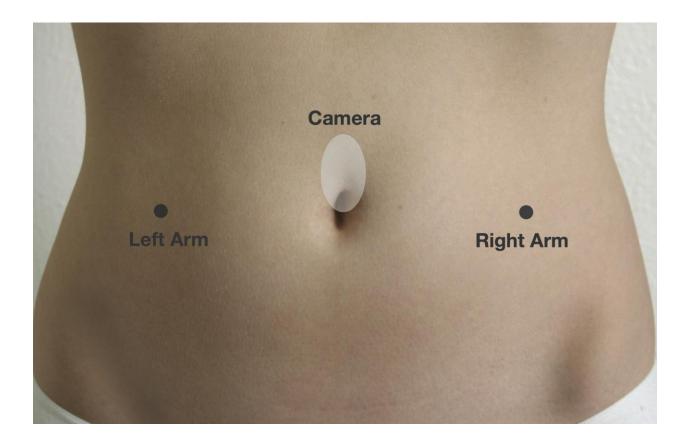
	Senhance
Parameter	Median
Console Time (min)	91.5
Surgery Elapsed Time (min)	138.5
Instrument Costs (\$)	\$559
Median Cost Savings by LAVH (\$)	


:tomy)


e (n=26)	Da Vin	vi (n=56)	
IQR	Median	IQR	P-Value
68-114	96	69.5-122	0.898
119-172.5	108.5	88-127.5	<0.001
\$162-624	\$1,393	\$1150-1393	<0.001
-\$83	4.00		NA

my)

illy)			
∋ (n=26)	LAVH	(n=34)	
IQR	Median	IQR	P-Value
68-114	NA	NA	NA
119-172.5	97.5	84-123	<0.001
\$162-624	\$498 🤇	\$467-506	0.336
\$6:	1.00		NA
)			


Josh Feldstein (Orcid ID: 0000-0001-8951-550X)

Printed with permission from Asensus Surgical, Inc. © 2021.

Figure 3. Recommended Senhance Gyn Port Placement

Printed with permission from Asensus Surgical, Inc. © 2021.

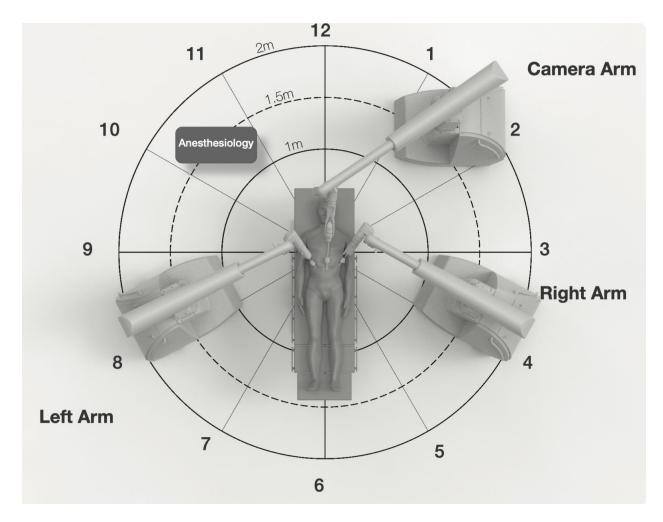


Figure 2. Initial Senhance Room Set-Up

Printed with permission from Asensus Surgical, Inc. © 2021.